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16. ABSTRACT 

The solution o f  many problems of attitude dynamics of spacecraft requires a thorough 
understanding of  gravitational forces and moments 
communicated most directly in terms of arguments based on Newton's law of 
gravitation, employing the methods of  Newtonian (vectorial) mechanics, and w i t h  
minimal recourse t o  the classical concepts of po ten t ia l  theory. 
necessary ideas are developed and relationships are established t o  permit the 
representation of gravitational forces and moments exerted on bodies in space by 
other bodies, both in terms involving the mass distribution properties of the bodies, 
and in terms o f  vector operations on those sca.lar functions classically described as 
gravitational potential functions. 

This understanding can be 

In this report the 

17. KEY WORDS 18. D I  STR I8  UTI ON STATEMENT 

Unclas sified-Unlimited 

Cat 10 

For sale by the National Technical Information Service, Springfield, Virginia 22161 

For sale by the Superintendent of Documents, US. Government 
Printing Office, Washington, D.C. 20402 





ume Is the secon i n  a serfes of r 

he f i r s t  v o l ~ m ~ ,  "~ i~emat i c s  o Rigid Bodies i n  Spaceflight," 
ssors Kane and ikins on var~ous aspects o 

was presented as Technical Report 0 ,  204 of the Stanford University 
Depar~ent of Appl ied echanics, published i n  ay o f  1971 (. Subsequent 
volumes w i  1 1 deal w i t h  non-gravi ta t ional  forces and moments on space- 
craft, w i t h  the attitude dynamics of r i g i d  spacecraft, and w i t h  the 
attitude dynamics of nonr ig id  spacecraft. In time, the series will be 
assembled as  a book intended both for classroom use and as a reference 
for practicing 

Most of the development herein i s  the unsponsored enterprise of the 
authorsl forming the basis for the spacecraft attitude dynamics studies 
of Contract NAS8-28358, 

The present volume, "Gravitational Forces and Moments on Spacecraft," 
furnishes a unique perspective on a subject t h a t  was developed i n  i t s  
classical form long before the era of modern space exploration. The 
development provided here differs from the traditional presentation of 
the subject by focusing attention on applications to  problems of 
attitude dynamics of the spacecraft, 
understanding of gravitational forces and moments required for the 
solution of problems of  attitude dynamics can be co unicated most 
directly i n  terms of arguments based on Newton's law o f  gravitation, 
presented by employing the methods o f  Newtonian (vectorial ) mechanics, 
w i t h  minimal recourse to  the classical concepts of potential theory. 
Accordingly, i n  this report, the necessary ideas are developed and 
relationships are established t o  permit the representation of gravitational 
forces and moments exerted on bodies i n  space by other bodies, both  i n  
terms i n v o l v i n g  the mass d i s t r i b u t i o n  properties of the bodies, and i n  
terms of vector operations on scalar functions classically described as  
gravitational potential functions e 

In the opinion of the authors,  
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and F, di rec ted  f 

toward F9 and having a magnitude proportional t o  the  product of m and z-  
and inversely proportional t o  the  square of t h e  dis tance between P and F. 
Hence, i f  p is the posi t ion vector  of P r e l a t i v e  t o  

the  force E can be expressed as 

(see Fig. 2.1.11, 

t. where C is t he  universal  g rav i ta t iona l  constant ,  given numerically by 
G f 6.6732 X 10 -llN*2kg-2 

0 

The fo rce  E experienced by i n  the  presence of P is 

i n  conformity with Newton's t h i r d  law. 

Example: If m is the mass of the  ear th ,  m the  mass of the  moon, and E 

t he  vector from the  mass center  of t he  e a r t h  t o  the mass center  of t he  moon, 

and i f  the numerical values of ';;;, m and I E I  are given approximately by 

24 22 8 m 5.97 X 10 kg, m 7.34 x 10 kg and 1x1 = 3.844 X 10 m, w h a t  is the  

magnitude of t he  force  E exerted on the  moon by the ear th?  

- 

As Eq. (1) appl ies  t o  p a r t i c l e s ,  i t  can be used for t he  purpose a t  hand 

only with the  supposition tha t  t he  ea r th  and moon can be replaced by 

* 
The superscr ipt  2 on a vector ind ica tes  s ca l a r  mul t ip l ica t ion  of the vector 
w i t h  i t s e l f ,  i.e., squaring t h e  magnitude of the vector. 

'E.A. Mechtly, "The In te rna t iona l  System of Units: 
Conversion Factors, " NASA SP-7012 Revised, 1969. 

Physical Constants and 
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Figure 2.1.1 
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14 2 -1 8 -2 (3.98602 x 10 Elm kg ) (7.34 X 1022kg) (3.844 x 10 m) 

1.98 X lo2' N 

The validity of this supposition is examined in Sec. 2.4. 
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d) body B is equivalent t o  a s ing1 

force  E whose l i n e  of ac t ion  passes through P, but not necessar i ly  through 

t h e  mass center  B of B. I f  B cons is t s  of p a r t i c l e s  P1, ..., PN of masses 

ml, ..., %, and i f  kl, ...) n, are the  pos i t ion  vectors  of PIS ..., 
r e l a t i v e  t o  7 (see Fig. 2.2.1), then E is given by 

* '  

pN 

whereas, i f  B is  a continuous d i s t r ibu t ion  of matter, and p is the mass 

densi ty  of B at  a generic point P of B, 2 i s  the  posi t ion vector of P 

relative t o  

d i f f e r e n t i a l  element of t he  f igure  (curve, surface, or so l id)  occupied by B, 

then E can be expressed a s  

(see Fig. 2.2.2), and d.r is the  length, area, or  volume of a 

Once t h e  l ine of ac t ion  of t he  force E i n  Eq. (1) or  Eq. (2) has been 
1 

establ ished,  it is  always possible  t o  loca t e  a point B on t h i s  l i n e  such 

that the  force  exerted by Y on a p a r t i c l e  whose mass is  equal t o  tha t  of B 

and which is placed a t  B 

point B , ca l led  t h e  center  of gravi ty  of B f o r  the a t t r a c t i n g  particle F, 
does not i n  general coincide with the mass center  of B; and i f  R i s  the  

dis tance from t o  the  center  of grav i ty  B', then 

9 

is equal t o  the  force E exerted on B by p. The 
I 

t 
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is t he  of B. 

Derivations: The force  dF- exerted by p on a d i f f e r e n t i a l  elemeat of 

B a t  point P acts along the l i n e  joining P t o  and is given by 

d p  -GGk(g ) ‘3/2pdr 
(2.1.1) 

By de f in i t i on ,  two systems of forces  are equivalent i f  they have equal 

resu l tan ts  and equal moments about one point.  Now, on the one hand, the  

resu l tan t  of t he  system of forces  exerted by 

elements of B is given by 

on a l l  t he  d i f f e r e n t i a l  

and the moment of t he  system of forces  about point 

dE, act ing along the  l i n e  joining P t o  P, has zero moment about P. 
other hand, t he  resu l tan t  of a system of forces  containing but one force 

is E, i t s e l f ,  and the  moment of t h i s  system about point p is zero if t he  

l i n e  of ac t ion  of passes through P. Hence, i f  is given by Eq. (2) and 

acts along a l i n e  of ac t ion  passing through P, then is equivalent t o  t h e  

system of forces  exerted by p on a l l  d i f f e r e n t i a l  elements of B. 

is equal t o  zero, because 

On t he  

A parallel proof may be constructed f o r  Eq. (l), which replaces  Eq. (2) 

when B cons is t s  of a f i n i t e  number of par t i c l e s .  

The t r u t h  of the  a s se r t ion  tha t  t h e  l i n e  of ac t ion  of t he  force does 
* 

not necessar i ly  pass through B is most e a s i l y  demonstrated by an example; 

7 



2.2,3. 

is t o  be replaced 

and an expression is t o  be found fo r  the dis tance R' between 

center of gravi ty  B' of B f o r  P. 

The system of forces  exerted by P on the pa r t i c l e s  comprising B 

i t h  a force, E whose l i n e  of act ion passes through F, 
and the 

I f  the  rod is  regarded as matter d is t r ibu ted  along a s t r a igh t  l i n e  

segment, then the  posi t ion vector E of a generic point P of the rod relative 

to  can be expressed as 

where hl and b2 are uni t  vector; dlrected as shown i n  Fig. 2.2.3 and where 

y varies from 0 t o  L. 

and a d i f f e ren t i a  eleaent of B t h  dy. Hence the force E, 
rekolved 4nto components arallel to .b and b-29 can be wr i t ten  

The mass density p of B a t  P is  then equal t o  m/L, 

-1. 
.. . 

and integrat ion y ie lds  

2 2 112 F2 = G&/a(a + L 



2.2 

9 



the l i n e  of ac t ion  of p is 

2 by o F1 a 

o r  

- E = - + -  1 aF1 E 

(8) 2 (6,7) 
LF (9) 

The r a t i o  E/L from Eq. (9) is p lo t ted  vs.  a / L  i n  Fig. 2.2.4. Since two 

bodies cannot occupy the  

be excluded from consideration. However, as this l i m i t  is approached, t he  

r a t i o  E/L approaches the  valu 

coincidence with . For any f h i t e  value of a /L ,  Fig. 2 . 2 . 4  ind ica tes  that 

the  l i n e  of ac t ion  E cannot pass through both 

same point i n  space, the l imi t ing  case a/L = 0 must 

l / 2  and the  l i n e  of ac t ion  of approaches 

* 
and B . 

The d is tance  R' from t o  the center of gravi ty  B' of B fo r  is given by 

It is clear from t h i s  e l e  t h a t  t h e  loca t ion  of t h e  center  of grav i ty  
1 

B 

posi t ion of t he  a t t r a c t i n g  p a r t i c l e  5. 
is not i n  general a property of body B alone, but depends a l s o  on t h e  

10 
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Figure 2.2.4 
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2.3 

2 , 3  

When a body B is  subjected t o  the g rav i t a t iona l  a t t r a c t i o n  of a p a r t i c l e  
- * 
P removed so f a r  from the  mass center 

B 

P and B , a use fu l  form of the  expression f o r  the force 

can be found as follows: 

of B 

2.3.11, and then expand t h e  integrand in ascending powers of Irl/R t o  obtain 

of B t ha t  the l a r g e s t  distance from 
* 

t o  any point P of B is considerably smaller than the dis tance R between 
- * 

given i n  Eq. (2.2.2) 

Replace  with the  sum of E, the  posi t ion vector  
* * 

relative t o  P, and r, t he  posi t ion vector of P relative t o  B (see Fig. 

where rci) is a co l l ec t ion  of terms of ith degree i n  l r l / R ,  m and 

masses of B and P, G is  t h e  universal  g rav i t a t iona l  constant, and a 

u n i t  vector directed from toward B , so that 

are the 

is a -1 * 

I n  pa r t i cu la r ,  f(2) is  given by 

* 
where L is t h e  i n e r t i a  dyadic of B f o r  B , and t r (L)  denotes a scalar in- 

variant of L, ca l l ed  the trace of _E and defined i n  terms of any mutually 

orthogonal u n i t  vectors  g1, ri2, and as 

12 
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gests two approx ich we shall find useful in the 

sequel; 

n G G  a F Z F A - -  - -- R2 -1 

and 

(5) 

Two expressions for f(2) which sometimes furnish convenient alternatives 

to the one given in Eq. (3) are obtained as follows: 

a and a -2 -3 
b -1 ’ 
for B and also forming a dextral orthogonal set. Next, define I and I 

as 

Introduce unit vectors 

such that gl, z2$ and s3 form a dextral, orthogonal set, and let 
k2, and k3 be unit vectors respectively parallel to principal axes of B 
* 

j jk 

and 

I A b .I*b 
j -3  -3  

Finally, let 

C A a - b  ij =-i -j 

Then - f(2) may be written either as 

14 



2.3 

or as 

2 2 2 
(1-3Cll) + I2(1-3Cl2) + 13(1-3c13)]&l 

+ I C  c 1s 
+ z11c21c11 + '2'22'12 3 23 13 2 

(11) + I C  C 
+ [11c31c11 '2'32'12 3 33 13 3 

The relative simplicity of Eq. (10) is a result of the use of time-dependent 

moments and products of inertia [see Eq. (7 ) j .  By way of contrast, the 

principal moments of inertia appearing in Eq. (11) are constants, and the 

orientation of B relative to g1, a , and a now comes into evidence through 

the direction cosines relating the two sets of unit vectors g1, ft2, g3 and 
-2 -3 

k1. 22' Ir3. 

Derivations: Replacing p in Eq. (2.2.2) by + (see Fig. 2.3.1) 

provides 

In terms of the normalized position vector 9, defined by 

5 l - -  A rlR 

and the unit vector gl satisfying 

15 



the force becomes 

Application of the binomial series expansion 

(valid for x C 1) to the exponentiated quantity then yields, for 

2gi p +  g 
2 1, the expression 

where dots represent terms of degree three and higher in 1g.l. 

can be simplified by taking advantage of the fact that B 

of B, for this means that 

This expression 
* 
is the mass center 

/-,,, = 0 (18) 

so that 

16 



2.3 

Furthermore, re with g / R  and o b s e ~ i n g  that  

r = m  

one a r r ives  a t  

- F =  - -  G i  2 El + % 2R [Z1lL2pd.r - 5=1=1-f~pdr*~1 
(19,20) R 

The i n t e g r a l s  appearing i n  Eq. (2) can be r e l a t ed  t o  inertia propert ies  

of B by introducing two quant i t ies :  

f ined as 

* 
the inertia dyadic of B f o r  B , de- 

where 2 denotes t h e  u n i t  dyadic, that is, a dyadic such t h a t ,  f o r  any vector 

I?, ~ ' 2  = YV = E; and the  trace of L, def'ined i n  Eq. (4). 

from Eqr. (22) and (4) that 

For it follows 

so t h a t  

17 



2.3 

and 

Consequently 

and the equivalence of Eqs. (1) and (26) becomes apparent after using Eq. (3) 

and recognizing that the three dots in Eq. (26) stand for terms of degree 

three and higher in IrI/R, these terms being represented in Eq. (1) by f (i) - 
for i > 3. - 

Referring to Eq. (7), one can express & as 

1 - 1  a a + I  a a + I  5:  - 11-1 1 12-1 2 13 1 3 

+ I  a a + I  a a +12g2a3 21-2-1 22-2-2 

+ I  a a  + I  a a  +13,p+3 31-3-1 32-32 

from which it follows that 

1-a = I a + I a + 131g3 - -1 11-1 21-2 

Substituting from this equation into Eq. (3) and noting that 

18 



2.3 

le 

one ar r ives  a t  Eq. (10). 

Finally,  Eq. (11) may be obtained from Eq. (10) a f t e r  observing that, 

i n  view of Eq. (8) and of t h e  assumption that hl, h2, and h3 are p a r a l l e l  

t o  principal axes of i n e r t i a  of B fo r  B , & c a n  be expressed as 
* 

I = I b b + 12h2b2 + - 1-1-1 

so that 

= Ilc:l + 12& + 13C13 2 

(9) 

and, s imilar ly ,  

'21 = 11c21cll + '2'22'12 '3'23'13 

and so for th .  Substi tution i n t o  Eq. (10) then yields  Eq. (11) i f  one makes 
2 use of the  f a c t  t ha t  Cil + C t 2  + C t 3  = 1 f o r  i = 1, 2, 3. 

Example: An approximate exprmsion is required fo r  the  force exerted 

on a uniform th in  rod B of mass m and length L by a p a r t i c l e  

located r e l a t i v e  t o  B as shown i n  Fig. 2.3.2, with R >> L. 

of mass 

Body B is t o  be 

19 



Y 

p! a 
i i  

x 
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~ d e a l i z e d  as matter d ~ s t r i b u t  g a s t r ~ ~ ~ h t  l i n e  

c3’ f c 4 l 9  etc. are omitted, Eq. (6) provides t h e  required ap- 

I f  hl, k2, and k3 are introduced as a set of proximate force  expression. 

dex t r a l ,  orthogonal un i t  vectors ,  with hl p a r a l l e l  t o  t he  rod axis, then 

t h e  inertia dyadic L of B f o r  B 
* 

is given by 

I = -  mL2 (b b +b&) - 12 -2-2 

which, when subs t i tu ted  i n t o  Eq. (3), int roduces in to  t h e  fo rce  expression 

the dot products h2*~1  and 

between b 

signif icance inherent  t o  the  problem, so t h a t  k2, k3, i2 and a3 are defined 

a r b i t r a r i l y ,  as shown i n  Fig. 2.3.2. It follows that 

To evaluate these, let  9 be the  angle 

and s19 and note t h a t  only these two uni t  vectors  have physical -1 

b ea = -s in  JI -2 -1 

and 

EO that, a f t e r  using 

21 



2,3 

and omitting (3) , - f (4) ,  e t c . ,  one obtains  

This r e s u l t  could have been obtained as e a s i l y  from E q s .  ( l ) * .  ( 6 ) ;  and 

(111, w i t h  t he  sube t i tu t ion  of d i r ec t ihn  cosines  ava i lab le  from Fig. 2.3.2 as 

‘11 ‘12 ‘13 

n 

cos$ -sin$ 0 

sin$ cos$ 0 

0 0 1  

and with I1 mLL = 0 , I 2 = I  = -  3 12 * 
When the  rod is  aligned w i t h  the l i n e  jo in ing  its mass center B t o  F, 

so that 9 = 0 ,  t he  force  becomes 

and when the rod is perpendicular t o  t h i s  l i n e ,  so t h a t  JI =  IT/^ rad., 

* 
Since in  these spec ia l  caaes l i n e s  passing through B 

g2, and -rr, are pr inc ipa l  axes of B fo r  B , E q s .  (33) and (34) could have 

been obtained most d i r e c t l y  by using Eq. ( lo ) ,  with 

9 = 0, 

and pa ra l l e l ing  &l, 
J( 

= 131 = 0 and f o r  

22 



Note t h a t  t h  Eq. (32) represents  a force  

d i rec ted  no , Such force c 

bodies t o  move i n  o o r b i t s  associated 

with p a r t i c l e  e f f e c t  is so small t h a t  it can generally be ignored 

even i n  high precis ion orb 

Certain d i f f e r  i n  See. 2.2 and the  present 

example should be noted ca ance, Eq. (32) i 
c - 2  L L when - a *b f -  < 1 , as required €or he  underlying series expansion R -1 -1 4R2 

i n  Eq. (171, whereas Eqs. (2.2,5)-(2,2.7) i n  the  l e  i n  Sec. 2.2 are 

not  subject to any suc c t ion ;  and the  l ine through and normal t o  

B passes throu 

2.3.2. For the s i n  Fig. 2.3.2 lies on the  normal 

a of B i n  Fig. 2, 039 but need not do so i n  Fig. 

t o  B passing throu . 3 ,  cos q and s i n  9 a r e  

given by 

and 

bu t  the  form of Eq. (32) 

simply subs t i t u t ing  t h  r @ s s ~ o n s  i n t o  Eq. (32); r a the r ,  it is necessary 

l e  t o  this case would not be obtained by 

23 



t o  expand s in $ in ascending p w e  

r after 

24 



the greatest dis- 

tance in either body from the mass center to any point of the body, the 

system of gravitational forces exerted on which 

can be expressed as 

by 5 has a resultant 

4 * 
where z1 is a unit vector directed fram B 
gravitational constant, and m and m are the masses of B and 5, respectively, 

and where - f(i) is  a collection of terms of ith degree in lzl/R, 

collection of terms of ith degree in lEl/R, and gCij) is a collection of 

terms in the product (Is1 /R) (121 /R)j, with L and 

vectors of generic points of B and 5 relative to B 

toward B , G is the universal 

is a 

i -  respectively position 

and B . * -4 In particular,, 

and 

* 4 
where 2 and z are the inertia dyadics of B for B 
respectively. 

and of for B , 

If z2 and z3 are defined so as to establish a dextral, orthogonal set of 
unit vectors a , z2, z3, then - f (2) and E(2) can de expreseed in terms of 
these unit vectors and the moments and products of inertia of B and 

-1 

25 



2. 

for axes pa ra l l e l ing  gls g2, and g3 and 

ividual  bodies. To t h i s  end, I and -z are defined as 
3k Jk 

and 

a f t e r  which fc2) and Zt2) may be written 

and 

Alternatively,  r(2) and can be expressed i n  terms of pr incipal  

moments of i n e r t i a  of B f o r  B and of for B . To accomplish t h i s ,  two 

sets of dex t r a l ,  orthogonal uni t  vectors,  bl, k2$ k3 and h,,,, b 

l l e l i n g  p r inc ipa l  axes of B fo r  B 

introduced, and I , i 

* -4 

- -  
'i; , para- -2, -3 * 4 

and of 5 f o r  B , respectively,  are 

, and are defined as i d  3 j' c i J  

(3 = 1,293) 

26 



.4 

and 

C A a o b  ij=a-J 

Thus one obtains 

2 2 2 - f’) 31 f 1I1(1-3CZ1) + 12(1-3C12) + 13(1-3C13)]=l 
mR 

+ FiC2ic11 + 12c22c12 + 13c23ci31=2 

+ “lC3lc11 + ‘2‘32‘12 + I C  3 33 C 13 32 3 

and 

A useful approximation of e i n  Eq. (1) may be obtained by defining 

such that 

27 



2.4 

with g(2) and z(') subs t i tu ted  from e i the r  

and (7), or  Eqs. (12) and (13). 

s. (2) and (31, or E 

Derivations: To e s t a b l i s h  the v a l i d i t y  of Eqa. (I), (2), (3), (61, (7), 

(121, and (131, expressions given i n  Sec. 2 . 3  may be used t o  represent the 

force exerted on B by a d i f f e r e n t i a l  element of 

point 'i; of 5 (see Fig. 2.4.1), and the t o t a l  force E appl ied t o  B by 

can then be obtained by in tegra t ing  over the f igure of g. 

i f  

P toward B , p is the mass densi ty  of a t  P, and d? is  t h e  volume of a 

d i f f e r e n t i a l  element of 5 a t  P, then, from Eqs. (2.3.1)-(2.3.3) with R, 

a , and m replaced by R, a , and pd'r, reepectively,  -1 -1 

located a t  a generic 

Specif ical ly ,  

and B , gl is a unit  vector  directed from * -  
is the dis tance between 

- * -  

- -  -- 

where the t h r e e  dote represent terms of t h i r d  or higher degree i n  Irl/R. 
* 

Now, i f  E - denotes the pos i t ion  vector of B 

posit ion vec tor  of B relative t o  B , then (see Fig. 2.4.1) 

r e l a t ive  t o  F, and E the  
4 * 

- &l 
-2 R 

--2 -3/2 = - ( R + X ) ( g 2  + 2 g ~ + r )  - -2 -312 
= 1 - 

Hence 
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The f i r s t  i n t e g r a l  i n  this equation has p rec i se ly  the same form as the  

i n t e g r a l  i n  Eq. (2.3.12). Consequently, proceeding as i n  that derivation, 

one obtains r e s u l t s  analogous t o  Eqs. (2.3.26), namely 

where the th ree  d o t s  represent terms of t h i r d  6r higher degree i n  lzl/R. In 

t h e  second i n t e g r a l  i n  Eq. (17), E and il may be replaced w i t b  R and z1, 
respectively,  because every term i n  the _integrand involves quan t i t i e s  of 

second or higher degree i n  1x1, so t ha t  no terms of i n t e r e s t  f o r  the purposes 

a t  hand are l o s t  through t h i s  replacement; and, once the  replacement has been 

made, t h e  port ion of the i n t e g r a l  displayed e x p l i c i t l y  i n  Eq. (17) can be 

evaluated readi ly .  Thus, one obtains 

where the th ree  d o t s  now represent terms of t h i r d  o r  higher degree either i n  

111 /R or  i n  171 /R o r  terms involving the product ( 1 ~ 1  /R) 

nei ther  i nor j equal t o  un i ty ,  because L and 

centers of B and 5. 

w i t h  the de f in i t i ons  i n  Eqs. (2) and (3). 

i (1-1 /R)’, with 

are drawn from the  mass 

Eq. (1) now follows d i r e c t l y  from Eq. (19) together 
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(31, (7), and (13). , to establish the validity of Eqs. (61, (71, and 

(13), one can proceed exactly as in the corresponding derivation8 in 

Sec. 2.3. 

Example: An approximate expression is required for the force exerted 

by a homogeneous, oblate spheroid 

B having the dimensions shown in Fig. 2.4.2. 

by in Eq. (14) is to be employed, and the three additive terms in this 

expression are to be compared with each other. 

comparison, the values 

on a homogeneous rectangular parallepiped 

The approximation of E denoted 

For purposes of numerical 

6 

6 

- 
a = 6.38 x 10 m 

6 = 6.36 x 10 

a = 1 6 m  

B < a  

R = 6.6c = 4.2108 X 10 m 

- 
m 

7 

are to be used. 

and a large, synchronous-altitude artificial satellite (B). 

The system then roughly approximates that of the earth (5) 
* 

Eqs.  (12) and (13) provide a convenient point of departure for the . * -  

The principal moments of inertia appearing in these 

" <  * 

required comparisons. 

equations are given by 

* 
A satellite in circular orbit at synchronous altitude orbits the earth 
every twenty-four hours, so that when in an equatorial orbit the satellite 
remains above a fixed point on earth. 
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2.4 

I2 = I3 = 12 (a2 + B2) 

f o r  t he  rectangular parallelepiped B, and by 

f o r  the spheroid 5. 

the  introduction of the eccen t r i c i ty  < of t h e  spheroid % w i t h  the subs t i t u t ion  

Later work is f a c i l i t a t e d  by eliminating B and through 

and a similar quantity E f o r  body B with the subst i tut ion 

B2 = a2 (1-E2) 

The vector f (2)  then becomes 
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.4 

s of E .2,14) 

By using Eq. (1 

Similarly, 

2.15) one can now express the magnitude lg(2) I of f(2) as 

(28) 2 4 112 2 2  a &  

(27) 8R2 
3 -  (1 - 2cll + 5cll) 

- -  - -  -2 -2-2 

5R2 
T(2) = = [+ (1 - 3cll,&l + c21c11=2 + C31Crl€t3 3 - 

and 

-(a If 

Fig. 2.4.3 2 showing a p lo t  of the function (1 - 2x + 5 ~ ~ ) ~ ' ~  versus 

x i n  the range -1 - -  < x < 1, can be used t o  f ind  extrema18 of lr(2) I and 

12 
it can thus be concluded tha t  

- -(a I by subs t i tu t ing  CI1 and CI1 fo r  x. By reference t o  E q s .  (28) and (30)  

and 
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X 
-1 0 1 

Figure 2.4.3 
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.4 

and subs t i tu t ion  of the  given numerica values  then y i e l ~ s  

and 

Eq. (34) shows t h a t ,  f o r  a large,  synchronous-+altitude satellite of the  

ear th ,  the  leading term i n  t h e  se r i e s  f o r  E i n  Eq. i(1) has'a magnitude f a r  

exceeding t h a t  of z(2), a vector which r e f l e c t s  the oblateness of the  e a r t h  

through the  presence of E i n  Eq. (30); and (see Eq. (33)) lg(2)1 is much 

smaller than even . -0) I 
It is noteworthy t h a t  t h e  t i ny  term f ( 2 )  (see Eq. (27)) depends on 

Cll, CZ1, and Cgl, and hence on the o r i en ta t ion  of the satellite relative t o  

al, a , and a , whereas (see Eq. (29)) involving zll, CZ1, and Cgl 

depends on the  or ien ta t ion  of the  s a t e l l i t e ' s  o r b i t a l  plane r e l a t i v e  t o  

the  spheroid. For an equator ia l  o rb i t ,  reduces t o  

- - 
-2 -3 - 

and the addi t ion  of t h i s  vector  t o  the term sl i n  Eq. (14) is of l i t t l e  

consequence (see Eq. (34)). By way of cont ras t ,  i f  B m o v e s  i n  a non- 
* 

equatoria& o r b t t ,  oblateness e f f e c t s  may be  s igni f icant  desp i te  the  f a c t  

t h a t  x(2)  is small i n  comparison with sl, because T ( 2 )  then has components 

perpendicular t o  a 

-. .- 

- 
L 

-1 
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e 5 Centrobaric b ~ i e s  

Sac. 2*2, the c 

a t ~ r a c t i n ~  p a r t i c l e  do 

B of B. However, there  e x i s t  bodies f o r  which the center  of gravi ty  and 

center  of mass necessarily. coincide. Such bodies a re  ca l l ed  centrobaric. 

Thus a body B of 

every p a r t i c l e  

* 
* 

mass m is centrobaric i f  the force 

of mass & is given by 

where G is the  universal  g rav i ta t iona l  constant ,  R i s  the  distance between 

P and B , and gl is a un i t  vector  directed from 
- * * 

toward B , 

Centrobaric bodies cain be found i n  a va r i e ty  of i n t e r e s t i n g  shapes and 

mass d i s t r ibu t ions  (see Prob. 2 f ) ;  but a l l  such bodies possess the  followino 

property: 

l i n e  passing through its mass center .  

of a centrobaric  body f o r  t he  mass center of the  body is a sphere. 

not  every body possessing t h i s  property i s  centrobaric (see Prob. 2e). 

A centrobaric  body has the a p e  moment of i n e r t i a  about every 

In  o ther  words, the i n e r t i a  e l l i p s o i d  

However, 

Derivations: The exis tence of centrobaric  bodies is most easily proven 

by c i t i n g  a spec i f i c  case (see the  Example, i n  which a s o l i d  sphere is 

shown t o  be centrobaric  i f  i ts mass dens i ty  a t  any point  is a function only 

of the d is tance  from the  point  t o  the center  of the sphere). 

To prove t h a t  a centrobaric  body B ha8 the same moment of i n e r t i a  about 
* 

every l i n e  passing through its mass center  B , it is s u f f i c i e n t  t o  show . 

* 
I n  the c l a s s i c a l  l i t e r a t u r e ,  the term center  of gravi ty  is sometimes so de- 
fined tha t  only a centrobaric  body has a center  of grav i ty ;  then the  center 
of mass coincides w i t h  the center  of grav i ty  whenever the l a t t e r  e x i s t s .  
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2.5 

t h a t  the quant i ty  et lagz l  has a value independent of etl, where L is t h e  

i n e r t i a  dyadic of B fo r  B N taken i n  conjunction, Eq. (1) and the 

series expansion f o r  E given by Eq. (2,3.1) imply 

* 

The terms i n  t h i s  summation are independent of each other i n  the sense 

t h a t  E(*) is proportional t o  Rm2,  g ( 3 )  is proportional t o  K-3, and so fo r th ,  

and R may be taken t o  be a r b i t r a r i l y  l a rge  (see Eq. ( 2 . 3 . 3 ) .  It follows 

t h a t  they vanish separately,  t h a t  is, t h a t  

i = 2,  ..., 00 

Hence 

and, using the expression f o r  i(2) given i n  Eq. (2 .3 .31 ,  one f inds  t h a t  

1 
3 +t*p~~ = - tr (L) 

Since t r ( I )  is an invariant ,  t h  moment of i n e r t i  a * p a  of B about the -1 -1 * 
l i n e  that  passes through B 

same value f o r  a l l  o r i en ta t ions  of sl relative t o  B. 

and is parallel t o  al has been shown t o  have the - 

Example: To show t h a t  a so l id  sphere S of mass m is centrobaric i f  

t he  mass densi ty  p at  a point P depends only on the distance r between P 
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and the center  S 

w i l l  be calculated.  

of S, t he  fo rce  E exerted on S by a p a r t i c l e  'jE; of mass m 

The pos i t i on  vector p of P r e l a t ive  Lo I) expressed i n  terms of the 
* 

spherical  po lar  coordinates r, 8 ,  $, the  d is tance  R between and S , and 

t h e  unit vec tors  zl,  EL^, shown i n  Fig. 2.5.1, is given by 53: 

2 = (R + r cos $)z1 + r s i n  $ sin 8 g2 + r s i n  $ cos 8 ta3 

The volume d-c of a d i f f e r e n t i a l  

d-c = r2 sin J, d r  de dJ, 

element of S is 

and with p = p(r )  the mass m of S can be expressed as 

m =/,,, 6" r2p 6" s i n  J, 12" de d$ d r  

or 

m =   IT la r2pdr 

where a is t h e  radius of S. 

The fo rce  E exerted by on S is given by 

o r ,  i n  somewhat more e x p l i c i t  terms, by 
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LSPHERE s (RADIUS a) 

Figure 2.5.1 
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2.5 

Using Eq. (2), one obtains f o r  t h i s  inner i n t eg ra l  i n  Eq. (6) 

[ (R+r cos$)ial + r s i n $ s i n h 2  + rsin$cos0g3]d9 - 2IT(R+rc0s$)~~ (7) ,,= 
so that 

(8) 
2 - F = - 2 r G G l a  r2p  6” sin$ (R +2Rrco~$+r’)-~’~ (R+rcosJl)d$dr 

(6,7) 

Integrat ion is now f a c i l i t a t e d  by the introduction of a new vardable v 

defined such tha t  

, 
1 (9) 

2 2  2 v A - R + 2Rr cos$ + r 

When t h i s  de f in i t i on  and t h e  implied re la t ionships  

and 

are subst i tuted i n t o  Eq. (8), there r e s u l t s  
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2.5 

a 2  GE m r pdr - - - 4lTG; a-- 
g2 g1 R2 ( 4 )  
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2.6 Moment exer ted on a body by a p a r t i c l e  

The system Q€ gravi t  tional. forces e d on a (not n e c e s s a ~ i  
- 

body B of mass m by a particl  

mass center B of B, given by 

a mom~nt pI about the  
* 

where is the resu l tan t  of the system of fo rces  Isee E q s .  (2.2.1), (2.2.2), 

and (2 .3 .1) l  and & is the pos i t ion  vector of B r e l a t ive  t o  p. 
distance R between and B subs tan t ia l ly  exceeds the g rea t e s t  dis tance 

from B to  any point  P of By t h i s  moment can be expressed as 

$5 
I f  the  

* 
* 

* 
where s1 is a u n i t  vector d i rec ted  from 

gravi ta t iona l  constant,  

s ion less  vector 

- r the  posit ion vector of a typ ica l  point P of B r e l a t ive  t o  B . 

toward B , G is the  universal  
* 

is t h e  ine r t i a  dyadic of B f o r  B , and the  dimen- 

is a co l l ec t ion  of terms of ith degree in Irl/RI with 
* 

Eq. (2) suggests the approximation 

Expressed i n  t e r m s  of scalars I i,j = 1,2,3,  defined as 
i j  ' 

.., 
t h e  vector ie given by 
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Alternat ively,  one can introduce a d t of o r t  1 unit vec tors  

-1’ b -2’ b -3 b 

express 

f o r  B and t h e  d i rec t ion  cosines C i , j  = 1,2,3 defined respect ively as 

* 
p a r a l l e l  t o  the pr inc ipa l  axes of i n e r t i a  of B f o r  B , and 

i n  terms of the  pr inc ipa l  moments of inertia 119 12, I3 of B 
A, 

* 
i j  

and 

C A a * b  i j  =-id (7) 

thus obtaining 

Eq. (S), despi te  its apparent s impl ic i ty ,  is less usefu l  than Eq. (8) ,  

both because the  products of i n e r t i a  121 and 131 vary wi th  the o r i en ta t ion  

of sl r e l a t i v e  t o  B and because the r o t a t i o n a l  equations of dynamics are 

generally most e a s i l y  formulated i n  terms of the vector  bas i s  kl, k2, k3. 

It should be noted t h a t  g, which by Eq. (3) is the f i r s t  term in Eq. - 
(2), can vanish when 

mation t o  

expansion f o r  g. Speci f ica l ly ,  vanishes whenever p a r a l l e l s  a pr inc ipa l  

ax i s  of i n e r t i a  of B f o r  B , but t h i s  state of a f f a i r s  need not produce a 

does not vanish. Hence, when using 3 as an approxi- 

one is not necessar i ly  r e t a in ing  the  l a rges t  term i n  the series 

* 

44 



2. 

zero value f o r  g (see Prob. 28). Moreover, 4 is ident ical ly  aero for  any 

ody with spherical i n e r t ~ a   ellipsoid^ iden t i ca l ly  Zero on 

if tha t  body is a l s o  centrobaric (see Sec. 2.5 and Prob. 2e). 

Derivations: I f  B is a continuous d i s t r ibu t ion  of matter, then the 

r e su l t an t  p of t h e  g rav i t a t iona l  forces exerted on B by 

i n  terms of khe force 

generic point P of B as 

can be expressed 

eixerted by on a d i f f e r e n t i a l  element of B a t  a 

* 
and, i f  

then the moment 

is the  posit ion vector of P relative t o  the mass center B of B, 

is 
* 

of the  system of grav i ta t iona l  forces about B 

Substi tuting 

* 
where is  the  posit ion vector of B relative t o  and e is t he  posit ion 

vector of P relative t o  (see Fig. 2.6.1), yields  

- M = f i - g + ~ ) X E -  - R x ~ + ~ ~ X d F  - 
(10,11) (9) 

But p a r a l l e l s  p, so that E X E =  0 and 
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2.6 

confirming Eq. (1). Alternatively, this result can also be inferred from 

Sec. 2.2 and from the fact that two equivalent systems of forces have equal 

moments about every point. 
I 

I 
- I  I 

e it a p p l ~ ~ s  aleo yen B co~lsists of a 
I finite number of particles, P1, ..., PN. 

Eq. (2) for - M is to be proven under the same restriptlonp on R and tqn . 
the dimensions of B as apply to the expression for 

these circumstances, substitution from Eqs. (2.3.1) and (h.3.2) into Eq. 7 

(13) yields 

in Eq. (2.3.1). Under 
1 "I 

I 

and use of Eqs. (2.3.3) and (2.3.4) then gives 

R" 

which is equivalent 

Verification of the 

the substitution 

to Eq. (2) if m(i) is defined as' - 

a 'ii% (1.2.2) -1 

equivalence of Eqs. (5) and (8) with Eq. (3) requireg 

After setting 
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one then a r r i v e  

one obtains  Eq. ( 8 ) .  

Example: The vector defined i n  Eq. (3) is t o  be  used to  approximate 
* 

the  moment g exerted by a p a r t i c l e  of mass about the mase center B of 

a homogeneous, r i g h t  c i r c u l a r  cylinder B having moments of i n e r t i a  J and I, 
* 

respect ively,  about the symmetry axis and about any l i n e  through B 

normal t o  the  symmetry axis. 

angles,4 and 0 ,  used to  spec i fy  the o r i en ta t ion  of the  synnnetry ax is  of B 

r e l a t i v e  to  a dext ra l ,  orthogonal set of un i t  vectors zii, g2, g3. 

ca l ly ,  a s  shown i n  Fig. 2.6.2, 8 is the angle  between g3 and the symmetry 

axis of B, and + is the  angle between g2 and the in t e r sec t ion  of the  plane P 

passing through B and normal to  g3 with the plane Q determined by the  

symmetry axis of B and a l i n e  passing through B and p a r a l l e l  t o  z3. 

and 

The  r e su l t  is t o  be expressed in terms of two 

Specif i -  

* 
* 

.I. 

Of t he  a l t e rna t ive  expressions for  M given i n  Eqs. (3) ,  ( 5 )  and ( 8 ) ,  

t he  l a s t  is the  most convenient, for  s u i t a b l e  unit  vec tors  kl, b,+, and k3 

can be introduced readi ly ,  f o r  example as shown In  Fig. 2.6.2, where k1 

is normal t o  plane Q. 

- 

Using Eq. (7), one then finds that 

Cll = cos + 

C12 = - cos 0 s i n  Ip 

C13 = s i n  8 s i n  + 
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I 
I 

Figure 2.6.2 

49 



D 

Hence 

If I # J, vanishes only when a t  least one of t he  following conditione 

is f u l f i l l e d :  

eases, the symmetry axis of B is e i ther  normal or parallel t o  the liae joining 

P and B , and considerations of symmetry ind ica te  tha t  

these circumstances. 

s i n  4 - 0, s i n  9 = 0, or cos 0 - COB 9 - 0. In  a l l  of these 

- * 
a lso  vanishes under 

Thus it appears that 5 - 0 can imply M, = 0 f o r  a 

a r t i c u l a r  body, although t h i s  implication i e  not va l id  i n  general. 
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2.7 

2,7 

necessarily rigid) bodies B and 

tance from the mas 

system of gravitational forces exerted on B by $ produces a moment 

B which can be expressed as 

substantially exceeds the greatest dis- 

center of either body to any point of I: 

about 
* 

4 * 
where a 

of B for B 

versal gravitational constant, and the: dimensionless vector is a 

collection of terms of ith degree in I.I/R, while the dimensionless vector 

- m(ij) is a collection of terms in the product (lrl/R)i(lrl /R)’$ with L and 

- r respectively the poaition vectors of generic points of B and % relative to 
* 4 
B and B . 

is a unit vector directed from B toward B , 1 is the inertia dyadic -1 * 
m and m are respectively the masses of B and 5, G is the uni- 

- 

The similarity of Eqs. (1) and (2.6.2) suggests that an approximate 

relationship similar to Eq. (2.6.3), namely 

may prove useful. The vector thus defined can be expressed ae 

.., 3Gm M = -  
- R3 

- I  a )  (‘21”3 31-2 

or as 
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Ii9 Iijs and C h g as i n  See, where $9 %, 
t ha t  is, the f i r s t  term i n  Eq. (l), can be domin~ted by other terms i n  the 

series. A s ign i f i can t  difference bet . (2.6.2) and Eq. (1) is t h a t  

--kl 

t h e  former can be replaced with Eq. (2*6@1)$  whereas the latter cannot.be so 

replaced, even i f  R a n d  are re-defined respectively as the posi t ion vector 
* 4 

of B relative t o  B and as the r e su l t an t  force exerted on B by E. 
Derivationo: The v a l i d i t y  of Eq. (1) can be established by using Eq. 

* 
(2.6.2) t o  represent: the moment exerted on B about B 

element of located a t  a generic point of (see Fig. 2.7.1) and then 

integrat ing over the f igu re  of 5. 

between i? and B , g1 is a u n i t  vector d i r ec t ed  from 

mass density of 5 at F9 and d 7  is t h e  volume of a d i f f e r e n t i a l  element of E 
a t  F, then, from Eq. (2.6.2), with R, a+., and 6 replaced by R, gl, and 

pdT, respectively,  

by a d i f f e r e n t i a l  

Specif ical ly ,  i f  E is the dis tance 
* * -  

toward B , p is the  

- -  
-- 

where the th ree  dots  represent terms of t h i r d  or higher degree i n  Irl/R. 

Because - I cons i s t s  of terms of second degree i n  lrl/R, t he  integrat ion i n  

Eq. (5) can produce only terms of second and higher degree i n  1x1 /R, -and 

the subs t i t u t ion  of gl f o r  gl and R f o r  E cannot r e s u l t  i n  the l o s s  of any 

terms of i n t e r e s t .  

t o  be removed from the integrand, deaving as a factor  an integral  equal  t o  

the mass m of 5, confirming t h e  f i r s t  t e r m  i n  Eq. (1); and they y i e l d  the 

These subs t i t u t ions  permit the f i r s t  term i n  parentheses 
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f i r s t  series i n  Eq. (1). The second series i n  Eq. (1) r e f l e c t s  the  dev ia t i  

of a from 411 and R from E. 
it  does not contain terms $inear i n  IzI/R because 5 is drawn from t h  

i n  t h i s  series involves lgl/Rs and -1 

center of E. 
I 

Eqs. (3) and (4) can be obtained from Eq. (2) by a procedure analogous 

t o  t ha t  used t o  derive Eqs. (2.5.5x and (2.5.8) from Eq. (2.5.3). 

Example: I n  the Example 06 Section 2.4 (see Fig. 2.4.2) , an approxi- 

mate expression was  developed for  the fo rce  exerted by a homogeneous obla te  

spheroid 5 on a'hcmogeneous rectangular parallelepiped B. Now an approxi- 

mate expression is t o  be obtained for  E, t h e  moment exerted by 'ij; on B about 

the  mass center  B of B. 
* 

To t h i s  end, 2 as given by Eq. (4) is t o  be 

formed, and the  magnitude of 2 is t o  be determined f o r  

24 - 
m = 6 x 10 

m = 160 kg. 

01 = 16 m. 

S = 4 m .  

R = 4.2108 x 10 m. 

G - 6.6732 x 

kg. 

7 

Nm2 kg-2 

As i n  the Example of See. 2.4, the system roughly approximates the 

ear th  and a l a rge ,  synchronous a l t i t u d e  a r t i f i c i a l  satellite B, 

The symmetry of B permits the subs t i tu t ion  of I2 f o r  I3 i n  Eq. (4), 

furnishing 
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2.7 

(I -I )C (1-cl1) (7) 1 2 11 
3Gi 

Variat ions i n  the magnitude of 

o r i en ta t ion  of B and 

and hl, and / c l a t t a i n s  its maxiam value when t h i s  angle is equal t o  n/4 rad., 

since the  der iva t ive  of 

Thus, for any body B with Ig = 12, 

resu l t ing  from changes i n  t h e  r e l a t ive  

thus depend only on changes i n  the  angle  between a -1 

.u 

w i t h  respect t o  Cll vanishes when Cll is 1/E. 

and f o r  the given rectangular paral le lepiped,  f o r  which 

2 
mcl I1 = - 6 

and 

I2 = I3 - - (a2 + B2) 12 

o r ,  a f t e r  using the given numerical values, 
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... 

f 2.6 X 10” Nm. 
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2.8 

2.8 Proximate bodies 

ional i n t e r ~ c t i o n  of two bodies which are 

s make e f f e c t i v e  use of r e s u l t s  which, 

a t  first glance, may appear t o  be inapplicable because -they were encountered 

i n i t i a l l y  i n  connection with the analysis of t h e  g rav i t a t iona l  i n t e rac t ion  of 

widely separated bodies. For instance,  consider Eq. (2.7.2), which furnishes  

an approximation t h a t  becomes ever be t t e r  as the distance -R between B 

B (see Fig. 2.8.la) grows i n  comparison w i t h  the largest  dimension of e i t h e r  

body. 

Fig.  2.8.lb), provided 5 does n o t  d i f f e r  too much from a centrobaric body 

(see See. 2.5) and R is s u f f i c t e n t l y  large i n  comparison w i t h  the l a r g e s t  

dimension of Is. 

a t  t h e  mass cen te r  B of the forces 

exerted on B by such a par t ic le  is  given t o  a good approximation by Eq. 

(2.6.3); and th i s  equation is  i d e n t i c a l  with Eq. (2.7.2). 

Example: Fig. 2.8.2 shows a pa r t i c l e  

* 
and 

4 

Eq. (2.7.2) can be use fu l  a l so  when B and 5 are near each other (see 

For 5 then acts nearly l ike  a pa r t i c l e  of IWLEB m s i tua t ed  
4 * 

of 5; t h e  resul tant  moment about B 

of mass m s i t u a t e d  on the  

axis of revolution of a uniform oblate spheroid B of mass m, a t  a distance 

R from the mass center  B of B .  To explore t h e  u t i l i t y  of Eq. (2.3.6) i n  

s i t u a t i o n s  involving proximity of a particle and a body, the r a t i o  F/F is 

t o  be plotted ve r sus  $ for  var ious values of E, where % is the magnitude of 

- % as given i n  Eq. (2.3.6), F is the magnitude of - F as given i n  Eq. (2.2.2), 

and B and E are defined as (see Fig. 2.8.2 for a and b) 

* 
- 
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2'. 8 

PROXIMATE BODIES 

Figure 2.8.1 
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Figure 2.8.2 
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2.8 

If s1 and a are un i t  vectors  as s h o ~  i n  Fig, 2.8.2, and g3 - X g2, -2 

then the aesociated moments and p r o d ~ t 8  

2ma2 m 2  2 I11 - - , 122 Ig3 = (a + b 

'12 '23 - '31 

Hence 

(a - b 3 2  .., - F -  
c2.3.6) R 

and 

For the  evaluation of the in tegra l  i n  Eq. (2.2.2), it is convenient 

t o  introduce the  coordinates r, 8, and z shown in Fig. 2.8.3 and to note 

tha t  p, the  pos i t ion  vector  of P relative t o  F, then can be expressed as 

2 = (R - z)sl  + r sin 8 z2 + r cos 0 s3 

while 

d-c = r de dr  dz 
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.8  

As fo r  pI  t 8s densi ty  of B, this is  

3m 
4nba 

p = -  2 

Hence 

where 

2 112 el = 0, €I2 = 2 ~ ;  z = -b, z = b; rl = 0, r = al l - (z /b)  1 1 2 2 

and, after carrying out the  indicated in tegra t ions  and using (1) and (2) t o  

eliminate b/R and a/b,  one arrives a t  

where H is defined as 

Consequently , 

- p" 
F 

$2E2 

3 (1-c') 
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In Fig. 2.8.4, $1, a s  

values  of E. 

dis tance  from 

of the  values of E, F/P approaches unity as $ approaches zero. 

values  of 6 near  uni ty  represent  s i t ua t ions  i n  which the  particle comes 

r e l a t i v e l y  close t o  the epheroid; and the e r r o r  one then makes when using 

F i n  place of F can be seen t o  depend on E, l a rger  departures of $/F from 

un i ty  being associated with l a r g e r  values of E, that is, with a more pro- 

nounced f l a t t e n i n g  of the e l l i p s o i d  (see Eq. (2)). However, it appears t ha t  

even fo r  6 ' 1.0, tha t  is, f o r  a pa r t i c l e  that is nearly i n  contact with the  

spheroid, ill? depar t s  only very  s l igh t ly  from unity so long as E < 0.10, 

which is the case, fo r  example. when E = E , where E 

of a spheroid whose major semi-diameters are equal t o  the  ear th ' s  polar  

and equator ia l  r a d i i .  

h ighly accurate  results when used i n  an ana lys i s  concerned with a near- 

e a r t h  s a t e l l i t e  ideal ized as a par t ic le .  

placing F a t  a great  

.w 

Conversely, 

-. 

* * 
is the  eccen t r i c i ty  

Consequently, Eq. (2.3.6) may be expected t o  y ie ld  
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Figure 2.8.4 
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2.9 

2.9 

It is sometimes convenient t o  employ vector operations on scalar 

functions i n  order t o  express g rav i t a t iona l  forces and moments. 

operations may be interpreted as ordinary and/or p a r t i a l  d i f f e ren t i a t ions  of 

scalar functions with respect  t o  vector variables.  I n  some cases t h e  vector 

i n  question i s  a posit ion vector,  and t h e  ordinary de r iva t ive  is then a 

These 

s p a t i a l  gradient.  When t h e  d i f f e r e n t i a t i o n  of a scalar function produces a 

force, t he  scalar function is called a f o r c e  function. I n  other cases d i f -  

f e r en t i a t ions  with respect t o  other vectors  are employed, as i n  the  representa- 

t i o n  of g rav i t a t iona l  moments i n  terms of der ivat ives  wi th  respect t o  u n i t  

vectors. 

To unify t h e  presentation of t h i s  sub jec t  i n  Sec. 2.10-2.20, t h e  math- 

ematical t o o l s  there  employed are f i r s t  discussed b r i e f l y  i n  t h i s  Section. 

I f  a scalar quantity F depends on a vector v, then it is useful t o  def ine - 
a vector denoted by IvF as follows: 

perpendicular u n i t  vectors a a and a let vi & a+ (i=1,2,3); regard 

F as a function of vl, v2 and v3; and set 

Introduce an a r b i t r a r y  set of mutually - 
-1’ -2’ -3 ’ 

aF a + -  a’ a +.E a 
F &jyl -I av2 -2 av3 -3 -x 

The vector V F constructed according t o  Eq. (1) is invariant with -x 
respect t o  t h e  choice of vec to r  basis a a a The operation denoted by 

V -x 
-1’ -2’ -3’ 

may be termed d i f f e r e n t i a t i o n  w2th respect  t o  vector  v. 
Similarly, i f  a vector quantity F depends on a vector  x, and f o r  some - 

a rb i t r a ry  vector basis  at, z2, a3 one de f ines  F 4 F a 

(i=1,2,3), then a scalar and a dyadic may be defined as 

and vi = x a i - -i -i 
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and 

(3) 

The quan t i t i e s  defined by Eqs, (2) and (3) do not depend upon the choice 

sis 23% EL3" 

In Eqs, (2) and (3) a vector  d i f f e r e n t i a t i o n  concept is introduced 

without i d e n t i f i c a t i o n  of a pa r t i cu la r  reference frame i n  which the  d i f f e r -  

en t i a t ion  occurs; t h i s  omission is  possible only with t h e  s t i pu la t ion  t h a t  

t he  or ientat ions of the u n i t  vectors _al, a2$ a3 do not depend on v. - 
Further useful  quan t i t i e s  are a t  times obtained by cascading some of 

these def ini t ions.  For example, when t h e  operation defined i n  Eq. (2) i s  

performed on t h e  vector defined i n  Eq, (l), t he  r e s u l t  i s  a scalar denoted by 

2 V F: --v 

When v I i s  the  posi t ion vecto 

other point, and when the vector  

c point r e l a t i v e  to aome 

inferred from t h e  context, t he  
n 

subscript  v - = 

then cal led respectively t h e  gradient of F, the divergence of E, t h e  gradient 

is  of ten omitted; the q u a n t i t i e s  IFs VeF, P - VF -- and VLF - are 

of F, and t h e  Laplacian of F. - 
As a consequence of t h e  def ini t ions given i n  Eqs, (1)-(4) and of 

various theorems of the  d i f f e r e n t i a l  ca l cu lus  of functions of one o r  more 

scalar  var iables ,  the quan t i t i e s  V F, V "F, and V F s a t i s f y  many relat ion-  

ships  having counterparts i n  t h i s  calculus, 

2 
-v --v - -V 

For example, i f  v = w + c, 
- - F a  
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.A 
where c is independent of 17. and if F(v) - and G(w) m.B are functions such that 

L_ 

V F = V  G -w -V - (5) 

Or, suppose that v(g19e*epgn) denotes a vector function of the scalar inde- 

pendent variables g1s.ee3gn; suppose, further, that F(v) m and G(glp.*"*gn) are 

functions such that G(glg. .., gn) = F[v(g19 e e I 9gn)] Then 

Three differentiation formulas involving a unit dyadic U and a unit 
P 

vector 2 having the same direction as a vector v will prove useful in the 

sequel. These are 

- 

and 

v v - u  -: - - 

Q v = u  -E - 

where v 4 v * 2, so that v = v 2. - -  D 

In dealing with gravitational moments, it is at t2mes convenient to 

invoke the idea of partial differentiation with respect to a vector, in 

the following sense: 

meanings as heretofore; let u. A 2 a ai (i = 1,2,3); and let v(u,v) - -  and 

G(u,v) - denote respectively a vector function and a scalar function of 

suppose that _al, _a29  zi3$ v, v p  and F have the same 

I =  

* 
A s  a notational convenience, a scalar quantity such as F which depends upon 
the vector v is designated F(v); - the functional representation of this 
quantity (ai required by Eqs, (1)-(4)) is written or 
F(v* v' v'), where vi 4 v, e ai and vi A 17 e a' (i=1,2,3) for arbitrary 
vecior bases -1 a 9 a -29-3 a and a*- -1 922 ' 9 - 3 8  at ' 2' 3 I -i 

67 



and v, choosing G(ulv) such t h a t  G(g,v) 4 F [ v ( u , v ) l r  - -  Then, def ining 

W a u  a s  

one can write 

o r ,  i n  view of Eq. (9), 

It follows f rom. th is  equation and from v = vu that - - 

Derivations: In  character iz ing a quan t i ty  as  a funct ion of a vector ,  

one impl i e s  t h a t  t he  quant i ty  is  represented i n  terms of t h e  sca la r  compo- 

nents of t he  vector by the  same functional re la t ionship,  regardless of vector 

basis. Thus f o r  example i f  t he  scalar quan t i ty  F is a funct ion of t he  vec- 

t o r  v, - and vi 

vector bases a ,a, ,a3 and $,a_;,$, then i n  functional notat ion 

* ai and v i  v - * _a;(i=1,2,3) for a r b i t r a r y  orthogonal 

-1 2 

F(vl,v2,v3) = F(v',v',v') 1 2 3  (14) 

Using t h i s  re la t ionship,  one can prove the  invariance of V F, yv * E, 
-!! - 

2 IvF- and V F with respect t o  the  choice of vector  basis  by establ ishing 

the  equal i ty  of a l t e rna t ive  representat ions of each of t hese  quant i t ies  i n  

-V - - 

terms of the  a r b i t r a r y  orthogonal vector bases 

This object ive can be accomp1ished"as follows: 

E;,$, and 5;. 
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Letting Cis 9 aiea_; ( i ~ j ~ 1 , 2 ~ 3 ) ,  one can 

a = a t C  -i -j i j  

Fi = F' C 
j i j  

and 

from the f a s t  of which it follows that 

Consequently ,using familiar d i f f e ren t i a t ion  theorems, one can write 

and 

But 

Hence, 

6jk 
5 

cij Cik (1.2.15) 

which establ ishes  the invariance of zv F. For Iv F, one has - 
m - 
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and the proofs f o r  V F a n d  ’77 e IF- proceed s¶milarly, -v - 
When F i n  Eq. (3) is replaced with v,, one has - 

Yv v = (1: V i )  a - i  

Now, 

= 8  a = a  avi = -  YE vi (1) avj a j  ij -j -i 

Hence 

y v v , = a a  = U  -i-i - - 
i n  agreement with Eq. (7).  

I 
If  v = v 2, so t ha t  u has the  s a m e  d i r ec t ion  as v, then - - 

and 

which proves the  v a l i d i t y  of Eq. (8). 

v u = V ( v  -1 I)= (I1 .-)y + v-1 Yv -v - -v, - 
= ( 4 2  yv v) 1 + v -1 v v -x - 
= ( - v  -2 I J ) y + v  -1 u - 

(7,8) 
-1 = v (V - IJIJ) 

Final ly ,  i n  connection with Eq. ( l l ) ,  note t h a t  both ui and v can be 

expressed as functions of v v v (where v A v a- ) a  1’ 2 9  3 i - -  -i 

70 



It follows t h a t  

so t h a t  

aG e -  aG v u +-v v 
(1) auj -x j av -x 

and t h i s  is equivalent t o  Eq. (11) since V 

apparent from Eq. (9). 

u is a symmetric dyadic, as is 
-V - 

Example: I n  Fig. 2.9.1, r , X  and B are spherical  coordinates of a point  

P, and b ,b b are u n i t  vectors  pointing respect ively i n  the  d i r ec t ions  i n  

which P moves when r , X , B  are made t o  vary, one a t  a t i m e .  

E of P relative t o  0 may be expressed as 

-1 -2'-3 
The posi t ion vector 

g (r,X,B) = r(cMhl + s X C S ~ _ ~  + ~85,) (26) 

If F(p) denotes a function of E, and i f  G( r ,X ,B)  is  defined as 

then Eq. (6) can be used t o  express the  gradient of F i n  the following 

frequently convenient form: 
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2.9 

Figure 2.9.1 
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To this end, one may begin by evaluating the partial derivatives of 

with respect to r,X and 8: 

chc8q1 + + sBa3 = bl 
aE 
- = :  

ar (26) 

= r(-sXcf3zl + chct3~~) 5 rc8k2 
ag - 
ax (26) 

- - = r(-cAsfhl - sXs$a2 + cb,) = rk3 
(26) 

aG - - r V F  ar - 

Next, from Eq. ( 6 ) ,  and with V written in place of V 'E' - 
aP 
* A  = VF k1 
ar (28) - 

aG - VF a h  - 
aG - =: VF a8 - 

Now, since klbl + 

VF - VF - - 

= r VFI k3 - * -  - 
(30) 

b2b2 + b3b3 is: a unit dyadic, 

(32) 

(33) 

Solving Eqs. (31)-(33) respectively for XF kl, IF * k2, and 
substituting into Eq. (34) ,  one arrives at Eq. (27). 

The Laplacian of F may be expressed as 

by using Eq. ( 4 )  in conjunction with Eq. (271, as follows: 
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2,9 

a i a  
ar -1 rcB ax - b  +-- V2F = V a VF = 

(4 1 (27 1 

Evaluating the partial derivative appearing in Eq. (36) but displaying only 

those terms that will not be eliminated by subsequent dot-multiplications, one 

has n 

+ ... 1 aG b +- - -  - (IF) =---I--- 

2 

a aG a% 1 a2G 
ax ar ax re$ ax2 -2 r a@ ah 

- a G b  _--  aG S$k2 + ... aG 
= ar '6122 + aA2 -2 r a$ 

2 a ac 1 a G + .., - (IF) = --+ -- a@ ar a@ r aB2 -3 

2 
l a G b  +... 3G 

ar -3 r af32 -3 
= - b  +- -  

and substitution into Eq. (36) then yields 

which is equivalent to Eq. (35). 
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2,lO 

2,lO 

The gravitational force F _. exerted on a particle P of mass m by a particle 

of mass m (see Sec, 2,l) can be expressed as 
F = V V A W  - -I? - -  

where p is the position vector of P relative to and V is given by .. 

with p defined as 

and C an arbitrary constant, while G is the universal gravitational constant. 

A scalar function of a vector variable is called a "force function" if 

the derivative of the function with respect to the variable is equal to a 

force. Thus V is a force function associated with the gravitational inter- 

action of two particles. 

The Laplacian of V (see Sec. 2.9) is zero: 
2 v v = o  (4) 

Eq. (4) is known as Laplace's equation. 

lems of physics, such as electrostatics, magnetostatics, hydrodynamics, 

This equation arises in many prob- 

and heat flow, as well as in gravitation, and it is one of the classical 

equations of partial differential equation theory. Any solution of Laplace's 

equation is called a spherical harmonic, and in the context of gravitational 

problems a solution is classically called a gravitational potential. 

purpose of characterizing the interaction force F between two particles, 

For the 

- 
however, only that special spherical harmonic given by Eq. (2) provides the 

force function appropriate for substitution into Eq. (1). 
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2,10 

Derivations: Differentiation of V with respect to p gives 
m 

-2 VV = G&Yp-' = -G&p u, - (2) (2.9,8) 

where u is the unit vector in the direction of p, that is, - - 
-1 

U_'P P - 
Consequently, 

vv = -&p-3p - - 
qhe Laplacian of V is 
, 
I 
I V2V = Q 

I 
- - 

(2.9.4) 

= F  - 
(2.1.1) 

(2.9.8, 

( 5 )  

(7) 

-2 .9.2)  

Example: A particle P of 

' mass iii, are situated as shown 

' coordinates of P and i1,k2,i3 
which P moves when r, X and f3 

mass m and two particles P1 and P2, each of 

in Fig. 2.10.1, where r,A and f3 are spherical 

are unit vectors pointing in the directions in 

are made to increase one at a'time. A force 
. >  

function V for the resultant gravitational force F acting on P is to be con- 

strutted, and this function is to be used to express F in terms of components 
- 

- 
respectively parallel to bl,b2,b3. 

The forces El and Z2 exerted on P respectively by P and P2 can be 1 

expressed as 

E i = Q  V 
'Ei 

(i=1,2) 

where p 

V2(~2) are given by 

is the position vector of P relative to P and where V,(E,) p d  -i i 

(i=l, 2) -1 
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2-10 

Figure 2.10.1 
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2 , l O  

Hence i" with pi equal t o  the magnitude of 

F , = F 1 + F 2 =  v v l + v  v 
(9) --E1 --E2 

I f  p is now introduced as the posit ion vector  of P relative t o  0, then - 
pi = p + zi (i=1,2) where Ei is  independent of p * i f  then Wi(p) is defined 

as 
- A' - 

then 

v v = v w i  ( i = l ,  2) 
- P i  i 

(2.9.3) E 
Hence 

F = V W  + V  W2=Vp(W1+W2)=V V 
-P - -P 1 =-E - (10,121 - 

where V i s  defined as 

(13) 

V i s  the  desired force function. 

To express ,F i n  terms of components p a r a l l e l  t o  kl,k2,k3, note t h a t  

p1 = ( r2 + L2 - ~ r ~ s i n ~ ) '  

2 p2 = (r2 + L + 2 r ~ s i n ~  

(15) 
and 

(16) 

and define a function W of r,A,B as 

(17) 
w A GL [ (r2+L2-2rLsinBr' + (r 2 2  +L +2rLsine 
- 

Then 

v = w  
(14-17) 
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2.10 

and Eq. (27) of Sec, 29 provides 

aW + - -  1 aw 
ax -2 r a6 -3 Q V = - b  + -p ar -1 - 

-312 
+ r +L +2rLsinB ) 

( 2  
(r+Lsing)] k1 

-312 
+ G k  [ (r2+L2-2rLsine) Lcos6 

- ( r 2 + ~ 2 + 2 r ~ s i n ~  

Substituting from Eq. (19) into Eq. (13) one then arrives at the desired 

expression for F. - 
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2,11 

2,11 

The r e s u l t a n t  g rav i t a t iona l  force F - exerted by a p a r t i c l e  F of mass 

on the p a r t i c l e s  of a (not necessarily r i g i d )  body B (see Sec. 2.2) can be 

expressed as 

F = V V  
-R, 

* 
where R is t h e  posi t ion vector of the mass center B of B r e l a t i v e  t o  P' 

I 

and V i s  a fo rce  function given by 

with 

A( E:)' (i=1, ..., N) 

and 

p i  LL II + T i  (i=l, . . ,N) 
(3) 

(4) 

Here B is presumed t o  cons i s t  of p a r t i c l e s  P1, ..., P of masses ml, ..., N 

r e l a t i v e  t o  I, assumed nonzero, r is t h e  posi t ion vector of P i s  the %' E i .  i -i * 
posit ion vector  of Pi r e l a t i v e  t o  B, C is a n  a rb i t r a ry  constant, and G is 

t h e  universal  g rav i t a t iona l  constant. 

matter not including the point occupied by P, then V is given by 

If B i s  a continuous d i s t r ibu t ion  of 

with 

P A ( $ ) +  

and 

p = R + r  _ - -  
where p is the  mass density of B a t  a generic  point P of B, p is the  posi- 

t i on  vector of P r e l a t i v e  t o  P, 
- 

is  t h e  posi t ion vector  of P relative t o  
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and dr is the length, area, or volume of a differential element of the 

figure (curve, surface, or solid) occupied b 

The force functions in E q s ,  (2) and (5) both satisfy Laplace's equation: 

(7) 2 V Y = O  

Derivations: Differentiation of Y with respect to R gives - 
(8  1 - -2 

"iPi !R XRY = -Gm - (2) i=l - 

Hence 
N 

-3 F - V V = -Gi -R (2.2 e 1) - (899) 

A parallel derivation shows that Eq. (1) remains valid when Eq. (2) 

is replaced by Eq. (5). 

Eq, (7) follows directly from Eq. (2.10.8), since the order of the 

operations of evaluating the gradient and integrating over B is interchange- 

able. 

Example: A uniform, thin rod B of length 2L and mass m is subjected to 

The value of a force the gravitational attraction of a particle P' of mass E. 

function V associated with the resultant gravitational force exerted by P" on 
B is to be determined in terms of the Cartesian coordinates x,y of P" for a 
coordinate system with origin at the mass center B of B, as shown in Fig. 

2.11.1. The constant C in Eq. (3) is to be chosen such that V approaches 

zero when y=L and L/x approaches zeroI 

* 
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Figure 2.1 1.1 
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If the rod is regarded as matter distributed along a straight line 

segment, then the distance p from P" to a generic point P o f  the rod can be 

expressed as 
% 

p = (x2 + TI2) 

where rl varies from y-L to y+L. The mass density p of B at P is equal to 

m/(2L), and a differential element of B has a length dq. Hence, 

and, when y=L, 

L 
- +  0 
X 

which equals zero by hypothesis. 
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2,12 

When a body B is  subjected t o  the g rav i t a t iona l  a t t r a c t i o n  of a p a r t i c l e  

removed so far from the  mass center B of B that  t he  l a r g e s t  dis tance from 
* 

B 

P' and B , a useful. form of t h e  expressions f o r  the fo rce  function V given i n  

t o  any point  P of B is subs t an t i a l ly  smaller than t h e  distance R between 
* 

Eq. (2.11.2) 

i n  ascending 

and (2@11.5) can be  found as follows: 

and with [(R - -  + r) ' , respectively,  and then expand t h e  integrand 

Replace pi and p with 

L 
powers of 1 f i  I /R 

where v(i) i s  a col lect ion of 

and L are t h e  masses of B and 

d 

or  121 /R t o  obtain 

V 

terms of the ith degree i n  Ir I/R or  lgl/R, m 

f?, C i s  an a rb i t r a ry  constant,  and G i s  the  

-i 

universal  g rav i t a t iona l  constant. In pa r t i cu la r ,  v ( ~ )  i s  given by 

where tr (I) is t h e  trace of t h e  

moment of inertia of B about the 

Fig. 2.3.1) 

- 

111 Li a1 . I 21 

* 
i n e r t i a  dyadic of B f o r  B and I is the 

l i n e  connecting P' and B 
11 * 

so t h a t  (see 

(3) 

Because I depends upon the o r i en ta t ion  of al r e l a t i v e  to  B, Eq. (2) 11 

is sometimes less convenient than an a l t e r n a t i v e  form involving c e n t r a l  moments 

and products of i n e r t i a  of B f o r  an a r b i t r a r y  vector b a s i s  bl,b2,b3, here 

represented by 

1 1 1  

The required expression i s  
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where 

1 1  1 

jk 
When B is a rigid body and bl,b2, and b3 are fixed in B, the scalars I 

(j,k=1,2,3) in Eq. (5)  become constants, whereas Ill in Eq. (2) remains a 

variable. 

For the special case in which the body-fixed unit vectors parallel 

principal axes of 
* 

B for B , past conventions (see Sec. 2.3) suggest the nota- 

[I1 ( 1-3Ci1) + I2 (1-3C&) + I3 ( l-,,:,)] 

where I and C (j=1,2,3) are defined respectively by Eqs .  (2.3.8) and (2.3.9). 
j ij 

Eqs ,  (5) and (6)  adopt particularly useful forms when the indicated 

direction cosines are written in terms of the spherical polar coordinates 

shown in Fig. 2.12.1. Eqs. ( 5 )  and ( 6 )  then become respectively, 

2 1 9 t 1 2 11 + 122 - 2133) (3din &-l)-3(Il1 - 122) cos Bcos2X 
4mR 

)I (7) 
I 1 2 ? 

-6 cos ~ s i n 2 ~  + 1~~sin213cos~ + sin2~sin~ 

and 

$2) = - 1 
4mR2 

I1 + I2 - 21,)(3sin2~ -1) 

-3 I -I cos Bcos2X ( 1  2) J 
It is often convenient to introduce some measure of the dimensions of 

B into v(~) in order to obtain an expression involving dimensionless 
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constants and dimensionless variables, 

selected normallzing dimension, and the symbols 

If the symbol RB i s  assigned to the 

and 

are introduced, then Eq. ( 8 )  becomes 

If - is the approximation to F - defined in Eq. (2.3.6), then? - can be 
expressed as 

N N E = ZRV - 
N 

where V is given by 

* 
and R is the position vector of B relative to F. - 

In other words, V is a force function suitable for dealing with the 
N 

gravitational interaction of a body and a remote particle when one uses F to 

approximate F. - 
As previously, the force function V satisfies Laplace's equation; more- 
N 

over, V also satisfies Laplace's equation, 

Derivations: Replacing p in Eq. (2.11.5) with 

Introducing q as q 4 r/R, noting that I&'R * _al, and applying the binomial 

series, convergent for 12R - -  4 r + - r21 < 1, find 

- - - -  
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G;;; 

GG 

v = -  R 
2 

= -  
R 

= - Gii I j p  dcc - * { E  p d'c - %jk2-3($l*r)2] - pd'c 

2R R 

+ ... + c  I 
Now, 

p d ~ = m  

J p dcc = 0 

and 

Furthermore 

and 

2Jf2  p dcc = tr(;) 

Hence, 

and 

v - - - G ~ [  1 + 1 [tr(z)  - 3Ill]+ ,* . I+ C 
(15,16,17,21) R 

i n  agreement with Eqs. (1) and (2). 

Eq. ( 5 )  follows d i r e c t l y  from Eq, (2) with the  subs t i t u t ion  of 

Eq. (3) f o r  Illy the  (summation convention) expansion 

9 t t  
I = I b b  jk-j-k - (4) 
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9 
With these relat ionships ,  Eq, (2) becomes 

ij e 
and the d e f i n i t i o n  of C 

t 9 1 9  1 
= -2 2mR (Iii - cli Iij C l j )  

1 1 

= % [Ill (1-3C;:) + 122 (1-3.;;) + 133 (1-3C;G) 
2mR 

( I ?  1 1 1  ? ) I  I 9 1  
-3 (112cllc12 + I 13 c 11 c 13 + I 21 c 1 2  c 11 + 123c12c13 

I 
1 I 

With the  symmetry r e l a t i o n s  I = I Eq. (23) confirms Eq.- (5). Eq. (d) is  

merely the spec ia l  zase of Eq. (5) with vanishing products of i n e r t i a  and new 

notation, and Eq. (7) and (8) are the s p e c i a l  cases of Eqs. (5) and (6) i n  

i j  j i '  

which the r e l a t ionsh ip  
I 1 ? 

a -1 = c o s $ c o ~ h ~ ~  + cos$sinhb2 + sinf3k3 (24) 

from Fig. 2.12.1 has been used t o  obtain f o r  t he  required d i r ec t ion  cosines 

the expressions 
1 9 

cll = cos$cosh ; C12 = cosf3sinh ; C13 = s in$  (25) 

The combination of Eqs. ( 5 )  and (25) produces 
r 

* ' 2  I ( 1-3sin2$) -6 ( I12cos f3cosXsid + I13cos$cosXsin$ 
+ I33 

+ sin$cosBsinX 

1 2 1 ' C  I 2 [Ill b-3~0~ 2 f3 (& + % ~ o s 2 h )  + 122 1- COS $ (4 - 4 cos21) 

2mR2 
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t r Q )  =T mL2 Ill = a 0 1 0  a = -  sin29 -1 - -1 12  

a f t e r  which subs t i tu t ion  

In order t o  obtain 

i n t o  E q s .  (2) and (13) gives 

- L2 (2-3sin 2 J, 
24R2 

t h i s  r e s u l t  by means of Eq. (11) ra ther  than Eq. ( 2 ) ,  

one must recognize by comparison of Figs. 2.12.1 and 2.12.2 khat i n  t h i s  

example f3 = 0 and A = -9. 

propert ies  

Substi tuting t h i s  r e s u l t  together  with t h e  mass 

(32)  
mL2 I2 = I3 = - I 1 = 0  ; 12  

i n t o  Eq. (11) provides 
, 

(33) 
(11) 

where 

3 = --(0 1 

( 9 )  2 4  

and 

Although it  is customary t o  

+- - -  mL2 2mL2) = -  L2 
2 l2 24RB 12 

make some s p e c i f i c  choice for RB (such as 

(34)  

(35) 

% = L/2), i n  order to  obtain numerical values  for J and E, it is apparent 

t ha t  i n  combining E q s .  (33 - 35) one can cancel RB fro,m v ( ~ ) ,  so the  choice 

of RB i s  i r r e l evan t  t o  v ( ~ ) .  The r e s u l t  then becomes 

1 V (2) 
(33-35) R2 

2 L2 2 + 3 (1-2sin JI = (4-66sin 9 )  L2 
s- 

48R2 
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Substitution of Eq. (36) into Eq. (13) confirms Eq, (31), as assured 

by the equivalence of Eqs, (2) and (11). For the orientation shown in Fig. 

2,12.2 the calculation from Eq. (2) is more direct, but Eq. (11) offers the 

advantage of explicit separation of mass properties and general kinematic 

variables, a11 in terms of dimensionless quantities. 

To verify that Eq. (12) is indeed satisfied, one may proceed as follows: 

Now, 

R - = R (cos$il - 
Hence 

V R = VRR cos$kl - sin$b 

+ R (-sin$ yR$ bl - cos$ xR+ 
-R- - ( - 

- - 
or, in view of Eqs. (2J0.6) and (2.10.7). 

3 a a - R IR$ a2 -1-1 

Dot-multiplication with g2 thus gives 

- 

a = -R vR$ -2 - 
and using I R R  = al and IR$ = -zt2/R, one obtains - - 

h. 

L2 sin 2 $ a2 ] = E  cy - 0,v = - - 
- (37) R 

(38 1 
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2.13 Force Function in terms of spherical harmonics 

When a body B of mass m is subjected to the gravitational attraction 

of mass E removed so far from the mass center B of B that 
* 

of a particle 

the largest distance from B 

than the distance R between P' and B , the force function I? given in Eqs. 

(2.11.2) and (2.11.5) can as an alternative to Eq. (2a12e1) be represented 

in series form as 

* 
to any point P of B is substantially smaller 

* 

where G is the universal gravitational constant, C is an arbitrary constant, 

RB is an arbitrary distance such that RB R, and 

with r representing the magnitude of the vector from B* to a generic point P, p 

representing the mass density function of B, and with Pi(cosa) representing 

the Legendre polynomial with argument the cosine of the angle a defined by 

Fig. 2.13.1. 

r,y,y are the sperical coordinates of P, and a is the angle subtended by the 

two lines joining P and to B . The series in Eq. (1) converges for (r/R)<l. 

In this figure, R,h,@ are the spherical coordinates of B, 

* 

By definition, the Legendre polynomials are given by P (y)Al and 0 

1 ... 1.3. ... (21-1) i i(i-I) 1-2 i(i-l)(i-2)(i-3) 1-4 + 

Pi(Y) 4 i! '<21-1)@2Y i- (21-1) (2i-3)*2*4 

(i=l*.*., m) (3) 

with the bracketed series terminating with the yo term if i is even and 

with the y1 term if i is odd. Thus 

Po(Y) = 1 

P,(Y) = y 
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Figure 2.13.1 
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2 

3 

P2(y) = % (3y -1) 

P3(Y) = +i (5y -3y) 

Eq. (2) f o r  C, (i=2, ...,-) can be  w r i t t e n  i n  such a way as t o  separate  
.L 

t h e  properties of B from the  locat ion of relative t o  

associated Legendre function of the f i r s t  kind, Pi(y), j 

B by introducing the  

defined by 

0 with the  bracketed series terminating with t h e  y term i f  i-j is even, and 

1 with the y 

and 

I n  terms of 

t e r m  i f  i-j is odd. For s p e c i f i c  indices of pa r t i cu la r  i n t e r e s t ,  

2 4 ,  2 (6b) pl(Y) = (l-y2)' ; P2(y) = 3y(l-y ) , P2(y) = 3(1-y2) 

associated Legendre functions, 

1 1 

where 

i=2,. . . ,m 

j=1,. . . ,m 
'ij = A -  m - (i+j)! {( fp P; (s iny)  cosjp pd.r 

and 
i=2,. . . ,m 

S A -  i j  - m ""1 (i+j)! (ef P i  (s in@) s injp pd.r j=l, *. . ,a3 
so t ha t  t he  constants S and C (for a l l  indices) e s t a b l i s h  the p rope r t i e s  

i j  i j  
of B without reference t o  t h e  location of F. 
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When Eqs, (1) and (!) are wri t ten i n  combination as 

t h e  force funct ion 

as P j  (sin61 cosjh i 

V is said t o  be i n  sphe r i ca l  harmonic form. 

and P j  (sinf3) sinjX are c l a s s i ca l ly  c a l l e d  tesseral 

Terms such 

i 

harmonics of ith degree and j th  order; tesseral harmonics of order zero are 

ca l l ed  zonal harmonics. A l i n e a r  combination of tesseral harmonics of i t h  

degree i s  ca l l ed  a surface spherical  harmonic of ith degree, and the  product 

of R-(i+l) with an ith degree surface sphe r i ca l  harmonic is called a s o l i d  

spherical  harmonic of ith degree. 

terms of so l id  spherical  harmonics. 

Thus Eq. (11) i s  a representation of V i n  

The Internat ional  Astronomical Union 

has  established Eq. (11) as a standard representation of t h e  force function 

of the ear th ,  choosing the mean equatorial  radius of t he  e a r t h  f o r  RB. 

series converges only outside of a sphere containing a l l  of the mass of B, 

s i nce  convergence of the series i n  Eq. (11) requires r < R f o r  a l l  r; due t o  

This 

the oblateness of the ear th ,  t he  series does not converge f o r  points i n  a 

region of space above the su r face  of the e a r t h  ranging i n  thickness from zero 

a t  the equator t o  approximately 20 km above the poles. 

I n  comparing the a l t e r n a t i v e  series expansions f o r  V represented by 

Eqs. (2.12e1) (1) and (11) , i t  is helpful  t o  recognize that 

1 c 2  = - 

* 
where I is t h e  i n e r t i a  dyadic of B for  B 

of B about t h e  l i n e  joining B and F. The equivalent contribution t o  Eq. (11) 

is  given by 

and Ill is t h e  moment of i n e r t i a  - 
* 
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2 
- (sinB](c cosjh + S sinjh) - 21 21 

2 3 = 'li (3sin 8-11 C20 + sin213 (C21cosh + S21sinh) 

(13) 2 + 3 cos 6 (C22cos2X + S22sin2X) 

Physical interpretation can be provided for the constants C and 
23 

S 

with principal axes of B for B ; then 

for j = 0,1,2 by aligning the unit vectors ii9ki9 and b; - in Fig. 2.13.1 
* 2 j  

(I1 + I2 - 213) 1 c20 = - 
2mRB 

CZ1 = s21 = s22 = 0 

and 

(14~) 1 

4mRB 
5 2  = - -7j (I1 - 12) 

* 
12, and I3 are the principal moments of inertia of B for B . 

ii and k i  are arbitrary orthogonal unit 
1' where I 

More generally, when b' -1' 
vectors, then 

c~~ = (Ii1+ 1i2 - 21;~)/(2m+) (15a) 

c21 = -1' 13 /(a;) ; C22 = - X i 2 ) /  (4raRi) (1%) 

(154 

For an axisymmetric rigid body B with its symmetry axis aligned with 

b; in Fig. 2.13.1, the constants S (i,j=O,.e.Om) and C. (i=2, ...) m. 
ij 11 

j=l,...,m) in Eq. (11) are zerop and the remaining cons$ahtb C 

tionally relabeled such that 

are tradi- io 

CiO A - Ji (16) 
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Then V takes the form 

in which only zonal harmonics appear. 

In the notation of Sec. 2.12 (see Eq. 2.12.131, V may be approximated 

in some cases by 

N V L  e[1+(g)'c2] f C  

N 

Laplace's equation is satisfied by both V and V, so that 

2 V V - 0  

and 

V2Y = 0 

Moreover, Laplace's equation is satisfied by 

for any constants A 

for V in Eq. (11) consisting of linear combinations of terms given by Eq. 

(19) is itself an approximation of V which satisfies Laplace's equation. 

and B so that any truncation of the series expression 
j 3' 

Derivations: Application of the law of cosines to Fig. 2.13.1 provides 

p2 = R2 - 2rRcosa 2 + r  

permitting the representation 

V = G 6  f p-' pd-r + C 
(2.11.5) 
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The iden t i ty  

Q) 

i 
(1-2Xrty2)-k = y Pi(X) 

i=o 
permits the fo rce  function t o  b e  expressed i n  terms of Legendre polynomials 

(see Eq. ( 3 ) )  i n  the form 

V = f 1 (if Pi(cosa) pdT + C 
i=o 

* 
whenever 

* 
f o r  a l l  r, so that the dis tance r from B t o  P i s  subs t an t i a l ly  less than 

R f o r  a l l  P i n  B. The f i r s t  two terms i n  Eq. (23 )  simplify, since 

Po (cosa) = 1 
(4a) 

and 

P1(cosa) = cosa (25 )  

so t ha t  

* 
and by v i r t u e  of t h e  d e f i n i t i o n  of mass c e n t e r  B 

and, by introducing the a r b i t r a r y  % with t h e  ident i ty  

Yt 
See O.D. Kellogg, Foundations of Po ten t i a l  Theory, Ungar Publishing Go., 
New York, 1929, p. 128. 
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subst i tuted i n t o  Eq, ( 2 8 ) ,  one f inds Eqs, (1) and (2) c o n f i n e d .  

Eq. (3) is a def ini t ion,  which leads d i r e c t l y  to  Eqs. (4) i n  spec ia l  

cases, Similarly t h e  d e f i n i t i o n  i n  Eq, ( 5 )  l eads  d i r e c t l y  t o  Eqs. ( 6 ) .  

Proof of Eq. (7) requires  t h e  trigonometric i den t i ty  
I 

cosa = sinBsiny + cosBcosycos(X-1.1) (29) 

which follows from t h e  law of cosines applied t o  the sphe r i ca l  t r i ang le  i n  

Fig. 2.13.1 defined by points  B 
* * 

P, Q, and 6. With Eq. (29) and the  lemma 

Eq. (2) becomes 

I i .  
+ sinjX P i  ( siny) s i n  j 1.1 pd.r 

confirming Eqs, (7) - (10) e 

Eq. (11) i s  the  d i r e c t  combination of Eqs. (1) and (7). 

Eq. (12) follows from Eq. (21, since 

* 
W.E. Byerly, An Elementary Treatise on Fourier  Series and Spherical, 
Cylindrical, and E l l ip so ida l  Harmonics, Ginn and Co., Boston, 1893, p. 211. 
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P2 (cosa) pd.r 

[ J 2r2pd.r - 3 

* 
where t r ( 1 )  is  t h e  trace of t h e  i n e r t i a  dyadic of B fo r  B 

moment of i n e r t i a  of B about t h e  l i n e  joining B 

and Ill is  the  - * 
and 5. 

Eq. (13) is a special  case of Eq. (21, wi th  Eq. (4c) and a pa i r  of 

trigbnometric i d e n t i t i e s  subst i tuted.  

The physlcal i n t e rp re t a t ions  i n  Eqs. (14) and (15) are confirmed by compar- 

i ng  Eq. (13) with Eqs. (2.12.8) and (2.12.71, noting t h a t  

1-2,. . .a 
and equating coe f f i c i en t s  of independent trigonometric functions,  such as 

2 2 2 (3s in  &1) , cos f3cos2Xy cos BsinZA, sin2BcosXy and sin2BsinX. 

Eq. (17) i s  a special  case of Eq. (11) i n  which the  de f in i t i on  i n  

Eq. (16) has been subst i tuted and due to  symmetry a l l  dependence on X has been 

eliminated. 

Eq. (18) follows from the  subs t i t u t ion  of v ( ~ )  from Eq. (32) i n t o  Eq. 

(2.12.13) .. 
Eq. (19) is iden t i ca l  t o  Eq. (2.11.7)? since V a s  expressed i n  Sec, 

2.13 i s  equivalent t o  V as defined i n  Sec. 2.11. 
N 

The statement i n  Eq. (20) t h a t  V a l so  s a t i s f i e s  Laplace's equation w a s  

asser ted but not proven i n  Sec. 2.12. Comparison of Eqs. (18) and (13) reveals  

that 
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N 

so that V may be wr i t t en  as a l i n e a r  combination of terms such as V: defined 

by Eq* (21). 3 Thus by superposition Eq. (20) is  val id  i f  Vi s a t i s f i e s  Laplace's 

equation. 

I n  order t o  prove t h a t  V i  is a pa r t i cu la r  solution of Laplace's equation 

2 when'written i n  terms of spherical  coordinates, note that V V = 0 becomes, 

from Eq. (2.9.35), 

To obtain a general solut ion by separation of variables,  adopt the assumed 

so lu t ion  

V = X(R)Y(B)Z(X) 
2 and multiply by R cosf3/(XYZ) t o  obtain 

- cos 2 f3 - d (2%) +- cos8 -qcos~)=--- 1 a2z 
X dR Y df3 ax2 

(35) 

Since the l e f t  s i d e  of Eq. (36) does not depend on A ,  n e i the r  does t h e  r i g h t  

s i d e ,  so t h a t  both s ides  equal t h e  same constant,  here ca l l ed  j . 2 Hence 

d2Z 2 

dX2 
- + j z - - 0  

and 

2 2 cos f3 d 2dX 
X dR (. E) 

Eq: (37) has t he  solut ion 

Z = AI cosjh + BlsinjX 
(37) 

(37) 

(38) 

(39) 

for a rb i t r a ry  constants A1 and B1. 
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2 be divided by cos B and rew~itten as 

2 -- - - L-____ - 
(38) cos 2 B ~ C O S $  dB 

The left side of Eq. (40) depends only on R, and the right s&de only on 8; 

hence both must be a constant, here designated i(i+l). Thus 

and 

i (i+l)X 

1 d  
cos B 

Eq, (41) has the solution 

for arbitrary constants A2 and B2, as may be confirmed by substitution, 

Eq. (42) adopts a more familiar form when written in terms of 

y sinB (44 1 

so that 

= cos@( dY ) 
The resulting equation is 

or 

5)IY 65) O 
2y - +  i(i+l) - 

dY dY 1 (l,y2) d2y - 
dY2 

(45) 

Eqs. (42), (45), and (46) are known as associated Legendre equations 

of degree i and order j. If the symbol Pi(sinB) j is defined to represent a 

105 



2,13 

pa r t i cu la r  solut ion t o  Eq, (42), then Eq, (34) has .a  p a r t i c u l a r  solut ion 

which i m p l i e s  a second pa r t i cu la r  solution 

thus  proving the  contention t h a t  V j  as defined by Eq. (211 s a t i s f i e s  

Laplace’s equation, subject t o  t h e  implied supposition that the function 

PJ (sinf3) s a t i s fy ing  the  associated Legendre equations is  t h e  same as the  

Pi(sinB) defined by Eq. (5). 

i 

i 

In order t o  confirm the  implied meaning of Pi(sinf3), j i t  is  convenient 

t o  rewrite Eq. (46) i n  terms of W, defined by 

so t h a t  

(48) 

(49) 

. i  
2 - 2  

multiplying by ( 1-y ) 
y i e l d s  

Eq. (52) is more meaningful when wri t ten i n  terms of L, as defined by 

106 



djL 
dyj 
- 

2-13 

(53) 

The r e su l t i ng  equation 

t h  
can be  recognized as the jth y-derivative of Legendre's equation of i 

degree, 

(1-y 2 )? d2L - 2y h dL + i(i+l) L = 0 
7 dY 

(55) 

(Proof requires only j successive d i f f e ren t i a t ions  of Eq. (55) t o  produce 

Eq* (54)). 

If the symbol Pi(y) designates a p a r t i c u l a r  solution of Eq. (55), then 

is  a pa r t i cu la r  solut ion of Eq. (46). In order t o  confirm Eq. (51, i t  is  now 

necessary f i r s t  t o  e s t ab l i sh  Eq. (3) f o r  Pi(y). To t h i s  end, l e t  

a P A ( y2--l)i (57) 

so t h a t  

i-1 da 2 - = 2 iy  ( y  "1) 
dY 

and 

2 da (1-y )G + 2iycc = 0 

Di f f e ren t i a t e  once with respect t o  y t o  obtain 

2 2 d a  (1-y ) 2 + 2y(i-1) da + 2ia = 0 
dY dY 

and d i f f e r e n t i a t e  with respect t o  y i times more t o  e s t ab l i sh  
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(lY2)--$ = o  

/ i proving t h a t  dia/dy s a t i s f i e s  Legendre@ s equation, Since Pi(y) has been 

iden t i f i ed  here simply as a pa r t i cu la r  s o l u t i o n  of Legendre's equation, one 

can define Pi(y) as an a r b i t r a r y  multiple of d aldy , and spec i f i ca l ly  l e t  i i  

i 

(57) 2'11 dyi 

This  r e su l t ,  known as Rodrigues' formula f o r  the Legendre polynomials, is 

usually considered as a property of the p a r t i c u l a r  so lu t ion  P (y) s a t i s f y i n g  

Legendre's equation, but a systematic evaluat ion of the der ivat ive i n  Eq. (58) 

i 

confirms the equivalence of t h i s  expression and the series developed i n  

Eq. (3). Subst i tut ion of t h i s  s e r i e s  i n t o  Eq. (56) and repeated d i f f e ren t i a -  

t i o n  confirms t h e  series expansion for P j (y) developed i n  Eq. (5). 
i 

Example: I n  conventional practice Eq. (11) i s  used i n  application t o  

na tu ra l  c e l e s t i a l  bodies f o r  which mass d i s t r i b u t i o n  p rope r t i e s  are not  known 

su f f i c i en t ly  w e l l  e i t h e r  t o  calculate  C and S from Eqs, (8) - (10) o r  t o  

use the series f o r  V pre'sented i n  Sec. 2.12. 
i j  i j  

The a l t e r n a t i v e  i s  t o  deduce 

values f o r  C and S ( a t  least for  the lower values of i and j )  from 
i j  i j  

empirical da t a  on g rav i t a t iona l  forces on o the r  bodies. 

In the case of the ea r th ,  f o r  example, measurements of g rav i t a t iona l  

forces  a t  t he  ea r th ' s  surface and on a r t i f i c a l  earth satell i tes have estab- 

l i shed  the approximate values 

c20 = -1.0827~10-~ 

c = s  - 0  
2.j 23 

when the normalizing quantity R 

equator ia l  radius,  here designated b. 

i s  given t h e  value of t h e  ear th 's  mean B 
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If the earth is assumed t o  be a homogeneous spheroid, with polar radius 

c, the empirical data can be used to compute the ratio c/b. Since 

I1 = I2 = m(b 2 2  +c )/5 

and 
2 Ig = 2mb / 5  

we have 

-1 .0827~10-~  = 1 [ (b +c ) 5 
(148) 2mb 2 5  “““‘1 

and 

C 4 - = (1-5x1.0827~10-~) = 0.9973 b 

109 



2.14 

2,14 Force function for two small bodies 

* -* 
When the distance R between the mass centers B and B of two (not 

necessarily rigid) bodies B and 5 exceeds the greatest distance in either 

body from the mass center to any point of the body, so that the resultant 

of the system of gravitational forces exerted on B by 5 can be approximated 

by a force F defined as 
8-J - 

where G is the universal gravitational constant, m and are the masses of B 
* 

and i(2) are given -* 
and 5, s1 is a unit: vector directed from B to B, and f - 

N 

by Eqs. (2.4.2) and (2.4.3), then a force function V such that 

N N 

with 

and 

(4) 

(5) 

* 
where tr(1) and tr (T) - are t he  traces of the inertia dyadics of B for B 

of 

the line connecting B and B . 

and 

about 

- 
-* - 

for B , while Ill and Ill are the moments of inertia of B and of 
* -* 

Derivation: Differentiating Eq. (3) with respect to R and then proceed- - 
ing as in the derivation of Eq, (2.12,13), one arrives at 
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and use of E q s .  (2.4.2) and (2.4.3) then g ives  

N 

Example: The Example i n  Section 2.4 d e a l s  with an approximation to tb 
grav i t a t iona l  fo rce  exerted on a rectangular paral le lepiped by an ob la t e  

spheroid. To construct  a fo rce  function V t h a t  s a t i s f i e s  Eq. (21, note that 

t h e  moments of i n e r t i a  Ill and Ill can be expressed as 

N 

- 

21 [2 - E 2 + (g. b,l) E 

- Ill = $ [2 - F2 + (Il" i$2 ai] 
= 

I11 12 

while  
2 

t r  (s) = 6 ma (3  - E2) 

tr (T) = - 2 z 2  (3 - E2) 

and 

5 

V can then be formed by subs t i t u t ing  in to  E q s .  (3) - (5): 

- 
N 

- 
and it may be v e r i f i e d  that d i f f e r e n t i a t i o n  of Vwi th  r e spec t  to 

E q s .  (2.9.8) and (2.9.9) leads t o  F - as given by Eqs. (2.4.14), (2.4.26), and 

(using 
N 

(2.4e29) 
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2,15 Force functions for a centrobaric body 

Since for purposes of dealing with gravitational effects a centrobaric 

body (see Section 2.5) may be replaced with a particle situated at the mass 

center of such a body, force functions suitable for dealing with the gravita- 

tional interaction of a centrobaric body and a particle, a centrobaric body and 

any body whatsoever, or a centrobaric body and a remote body can be obtained 

directly from Eqs.  (2.10.2) (2.11.2), (2.11,5)y (2.12.1) (2.13.1) or (2.13.11). 

Example: The gravitational force F exerted by an uniform sphere S of - 
mass M on a dumbell of mass 2m (see Fig .  2.15.1) can be expressed as 

with 

V = GNm ~~ + + [(. - + C 
(2.12.2) 

where n is a unit vector directed as shown in Fig. 2.15.1. - 
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S 

R - 

m 

rn 

Figure 2.15.1 
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2.16 
* 

When the distance between the mass centers B and 5 of two bodies B and 

to any point of B, and a force function 
* 

5 exceeds the greatest distance from B 

) for thg force exerted by B on a particle of unit mass at a point P situated 

as shown in Fig. 2.16.1 is available, then there exists a function VQ), where 

s is the position vector of B 
gravitational forces exerted by 5 on B can be approximated by a force F expressed 

as 

* 
relative to 5*, such that the resultant of all 

- 

where the synbol V connotes differentiation with respect to R .  
V(g) is given by 

The function - 
N 

N 

V(g) = mv@) - - - I: VW(R) -- - + C (2) I '  

where m is the mass of B, I is the inertia dyadic of B for B , and C is an 
* - 

* 
I arbitrary constant. 

Derivations: The gravitational force dF exerted by 5 on a differential - i 

1 element of B at P can be expressed as 

dF = V VpdT - 
(2.11.1) "E (3) 

where p is the mass density of B at P while dT is the volume of the element. 

dpnsequently, the resultant F - of all gravitational forces exerted by B on B 

is given by 

I I 

(4) 

* 
The double dot product in Eq. (2) is defined such that, for two dyads u u 

and z1v2, (y1u2): (y1y2) = (g,*y,> (52*y2) ; and it obeys the distributive 
law when applied to dyadics: 

-1-2 

(a g +b + e . . ) :  (A A +B_ €J +..,) = ala2: AlA2 + slg2 : BIB2 + ... -1 2 -1 2 - 1 2  1 2  
+ ,b1b2: hlA2 + ,blb2 : + 0 0 0 

+ ... 
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To obtain the desired approximation to F, - one can expand v($ in a 

Taylor series about p = R, - retaining only terms up to and including *se of 

degree three in 1 ~ 1 ,  where 5 4 - 

respect to 2; and then carry out the integration indicated in Eq. (4). 

tasks are facilitated by introducing a function W(z) 

one to write 

~ 

- (see *Fig. 2.16.1) ; differentiate with 

These 

V(E + E ) ,  which permits 

v v  = v w  
"E (2.9.5) "E 

and 

F = S1,WpdT - (4.5) 

( 5 )  

If nl, n2¶ n3 are any amtually perpendicular unit vectors and ri A f 
(i=1,2,3), the Taylor series expansion of W about = 0 can be written (using 

the summation convention) 

+ ... (7) 
1 1 

= w(0) + ri w,i + 21 rirj w,ij,+ 31 rirjrk w,ijk 

where 

and so forth. Differentiating with respect to rR9 one obtains 

1 + ... W , R  + riW,ifi + T rirjW,ijR = 

Hence, 

v w  = v w  + ... 
"5 (2.9.1) (-f ) - 

- r=O 

Substituting into Eq. (6) only the terms here displayed explicitly, and 

noting that 
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where is the unit dyadic, one can now write 

or, after using Eq. (51, 

where C is an arbitrary constant, Now, differentiating V(2)with respect to 

and then setting E equal to R - is precisely the same as differentiating V(R) 

with respect to E. Hence, if T;I connotes differentiation with respect to E ,  
then 

Now 

U: - VVV(R) -_ I = V*W(R) - -  - = 12V(R) = 0 

(2.11.7) 
(u 

Thus Eq. (1) follows immediately if Eq. (2) is used to form V(R). - 
Example: When V(R) is available in the form of an explicit function - 

* 
V (R,A,B) of the spherical coordinates R,X,f3 shown in Fig. 2.16.2, where gl, 

~ ~ , n ~  are any mutually perpendicular unit vectors, one can formulate - as follows: 
Let _al, ,a2, g3 be mutually perpendicular unit vectors directed as shown in 

Fig. 2.16.2. Define I as 
j k  
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/ \  P / 

Figure 2.16.2 
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and 

Then 

a 1 av* 433 - "ii: 7 J = p -  

For the derivation of Eq. (14), it is helpful to note that, since the 

indicated partial differentiation is referred to the reference frame in which 

~ l s ~ 2 , ~ 3  in Fig. 2.16.2 are fixed, 

Also, proceeding as in the Example in See. 2-9, one can verify that, if 

V(R) = V*(R,A,B), then 

Differentiating once more with respect to and using Eq, (15) one then 

finds that 

oov(9 = Q,,a,_a, + Q,,_a,a, + Q33a323 + '.@ (17 1 

where Q,,, Q,,, Q,, are given by Eqs. ( 4 ) - ( 6 )  while the dots represent all 

terms involving the dyads giaj with i Z 3 .  

be expressed as 

Similarly, the inertia dyadic I can - 
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I a a + 12222a2 + 133,a3,a3 + .a. 11-1-1 I 

Hence $ 

* 
With V i n  place of V(R), one thus obtains from Eq. (2) - 

FJ * 1  
V(E) mv - 3 (Il1Ql1 + 122Q22 .f 133Q33) + C 

-9l 
Moreover, defining V (R,X,@) as the right-hand member of th i s  equations, which 

yields Eq. (13), one can w r i t e  [compare with Eq. (1611 

, 
Subsyitupion into Eq. (1) then produces Eq. (14). 
( 
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2,17 

Force functions (see Secs. 2,1Q - 2,16) can be used also i n  connection 

with g rav i t a t iona l  moments. For t h e  in t e rac t ion  of a p a r t i c l e  and a (not 

necessarily r i g i d )  body, the moment M given by Eq. (2.6.1) can be expressed as - 
(1 1 M = -R X VV - I _ -  

where V(R) is given by Eq. (2.11e2) o r  by Eq. (2.11.5) and VV is  the  deriva- 

t ive of V with respect t o  R; o r ,  i f  W is defined as W(al,R) A VIR(a_l,R)], 

c.. 

is  - - 
given a l so  by 

N 

Similarly, f o r  M as defined i n  Eq. (2.6.3), one can write - 

N 

where V is given by Eq. (2.12.13); o r  can be expressed as 

N 

where W is a function of a 

of B about the  l i n e  connecting and B as 

and R defined i n  terms of t h e  moment of i n e r t i a  Ill -1 * 

3GGI11 
+ G  " A  w = - -  

2~~ 

Derivations: Eq. (1) is obtained by subs t i t u t ing  from Eq. (2.11.1) i n t o  

Eq. (2.6.1); and Eq. (2) then follows i f  one uses Eq. (2.9.12). 

Referring t o  Eqs. (2.3.6) and (2.3.3), one can w r i t e  

and, replacing R s1 with R, 

(2.12.12) t o  eliminate ?e - 

N 

= M  a1 I e 21 
(2.6.3) 

one then arrives a t  Eq. (3) a f t e r  using Eq. 

1 2 1  



then 

and 

or, since tr (I) is independent of _al, 
, 

Consequently 

in agreement with Eq, (4). 

Example, in Fig. 2.17.1, ,al, ,a2$ g3 and kl, b2, b3 are dextral sets of' 
orthogonal unit vectors, E is a particle of mass G, and B is a rigid body of 
mass m. is chosen such that the position vector R of the 

mass center B of B relative to 

fixed in B. 

The unit vector a -1 - 
* 

is given by E = G1; and bl, k2, i3 are 

If el, e2, €I3 are body-two orientation angles (see Sec. 1.7) for B in 

a reference frame in which ,al, a are fixed, one can express R as -2 53 - 

Given a force function V(R) for the gravitational interaction of and B, one 

can, therefore, define a function W(R,el, e2, 03) as 
- 

122 



F r a  

f i r e  2'17.1 

123 



2.17 

* 
The moment M exer ted by 

p a r t i a l  der iva t ives  of W with respect  t o  e2 and 03 by proceeding as follows: 

on B about B can then be expressed i n  terms of - 

Partial  d i f f e r e n t i a t i o n  of with respect  t o  R,e2 ,  and €I3 yie lds  

a R  - - c2b1 + s 2 ~ 3 k 2  + s2c3b3 
aR (6) 

a R  
- = R(-s2bl+ c s b + c2c3b3) 
ae2 (6) 

- 
2 3-2 

From Eq. (2.9.5) 

aR 

aR(8) 

- a w  - c2 pI ' k1 + s2s3 y3 * .b2 + s2c3 vv * b3 x*= 'Iv * - -  

3R - - VV * - = R YV 0 k2 - s2s3 8 b_g) ae3 - ae3 (10) 

Eqs. (11)-(13) may be solved f o r  t h e  dot-products of VV - with bl, b2, b3; and 

9 can then be expressed as 

vv - - VV - * i l b l +  yJ b2k2 + - w * k3b3 

-(" - - - s ) b  1 aw 
a R  '2 R ae2 2 -1 

1 aw '3 3 +--  l aw  R ae2 c s  2 3 +---)b2 R ae3 s2 

1 aw + - -  3 R ae2 '2'3 - it% 7 
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Thie equation does not involve el explicit ly;  but, referred to il,a2,a3, rather 

than to  bl,k2,b3, is given by (use (1.17.31)l. 

whip3 brings the dependence of M - on el into evidence. 
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2,18 Force fuhction expressions for moment exerted on a body by a body 

If V is the force function for a body J3 and a parttcle of unit mass, 
* 

then the moment exerted by a body '"B on B about its mass center B is given by 

whe;re,. as in Fig. 2.7.1, ? is a generic point of g 9  

t o  B , 5 is the mass density of % and d? is a differential element of volume 

is the vector from P" 
* 

of iL 
* 

When the distance R between the mass centers B and E* of B and 5 is 

large relative to the 

M s  L 36 
B 

in which E and i1 are 
When R is large 

largest dimensions of B, then H can be approximated by 
I_ 

- - 
a p l y  - 

pd? 
it3 

defined by - = 

relative to the dimensions of both B and E, M can be 

il, as in Fig. 2.7.1: 

N 

approximated by Eqs. (2.17.3) or Eqs. (2.17.4) and (2.17.5) with V from Eqs. 

(2,12.13), where now R, EL, and al are to be interpreted as indicated in Fig. 
2.7.1, Ill is the moment of inertia of B about the line joining B 

-* * 
and B , 

and m is the mass of g. 

Derivations: 

Eq. (1) follows from the definition of a moment about B" and the identi- 

fication of YzV Ed? as the force exerted on B by the differential element of 

mass at i;. 

As shown in Eqs. (2.12-1) and (2.12.2), the force function for B and an 

element of unit mass at i can be written as 
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where v(i) represents terms of ith degree in the ratio 1rI/R (see Fig. 2.7.1), 

Differentiation yields 

- (i) tr(I)- 3 5  * I e a V - - -1 yzv = - (2.10.7) 
(2.10.6) 

a, 

v-v (i ] -R i=3 - + 

Substitution of Eq. (4) into Eq. (1) leads to 

which justifies the approximation in Eq. (2) when body B is small in dimension 

relative to R. 

Beginning with Eq. (2), one can when 8 is also of small dimension 

relative to R introduce the approximations 

= R(l + ...) ( 6 )  

- a + ... (7 1 El -1 
- 

where three dots represent terms of first degree or higher in the ratio 

IrI/R (see Fig. 2.7.1). 

using the definition 

By substituting Eqs. ( 6 )  and (7) into Eq. (21, and 

one can confirm the applicability of Eq. (2.7.2), with al now interpreted 
as in Fig. 2.7.1; Eq. (2.7.2) has been shown in Section 2.17 to be equivalent 

to Eqs. (2.17.3) and to the combination of Eqs. (2.17.4) and (2.17.5). 
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Fig. 2.4.2 in Section 2,4 portrays a homogeneous oblate spheroid and 
,* * 

a homogeneous rectangular parallelepiped B, with the mass centers B 

B and 3 respectively separated by a distance R that substantially exceeds the 

maximum dimensions of 8 and B. 

and B of 
- 

* 
The moment exerted by 5 on B about B is approximated by 

Yrr N 

M = - x yRv 
(2.17 . 3) - 

where 

As implied by the Example of Section 2.14, Eq. (10) produces 

'11 N V - @ q 1 + % [ 1 -  2 2  3(_al.ktl) + c  
R 

(This result should be contrasted with V as it actually appears in the Example 

of Section 2.14; the same distinction exists between the V of Eq. (2.12.13) and 

Differentiation oi 

Giiim VY = -- - 
-R - (11,2.9.8, R2 

2.9.9) 

Eq. (11) provides 

as indicated by the Examples in Sections 2.14 and 2.4. 

Substitution and cross multiplication produce 

This result should be identical to Eq. (2.7.6) in the Example of 

Section 2.7. 

the identities 

To reconcile these two expressions for E ,  one must recognize 
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2 2  
II m a  E 1 1 2  

(2.7,9, - 5 
2.7.10, 
2-4.25) 

and 

- C  b = C  a - C  a ‘13b2 12-3 21-3 31-2 

The v a l i d i t y  of Eq. (15) follows from the  expressions 

and the  equal i ty  of an element of the d i r ec t ion  cosine matrix with its 

(14 1 

cofactor, both of which are established i n  Section 1.2. 
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2,19 

body 

When the distance between the mass centers B and B of two bodies B 

and exceeds the greatest distance from B to any point of B, and a force 

function V(2) for the forces exerted by f on a particle of unit mass at a 

point P situated as shown in Fig. 2.16.1 is available, then the system of 

gravitational forces exerted by 5 on B produces a moment about B that is 

* ,* 
* 

* 

given approximately by 
ry 

-I - VW(R) -- - (1) 
* * 

where - I is the inertia dyadic of B for B , 3 is the position vector of B 
relative to E*, and V - connotes differentiation with respect to R. - .t. 

Derivation: The system of gravitational forces exerted by f on B 
* 

produces a moment M - about B such that 

M - = /  r x V Vpd-c (2) - -P - 
Expanding V V in a Taylor series as in See. 2.16 following Eq. (2.16.4), one 

can shoy thZt 
‘P 

V V = VV(R) + * vVV(R) + ... 
-P - - -- - 

so that, retaining only terms displayed explicitly, one arrives at 

* 
The first integral vanishes because r - originates at the mass center of B ; 
and 

‘The cross-dot product in Eq. (1) is defined such that, for two dyads 
A 

u u and v1v2, (y2) 2 (v1v2) = (u Xv 1 (y2* v2); and it obeys the dis- -1-2 -1 -1 
tributive law when applied to dyadics: 

(y2+l.p2+e 0 0 12 (p2+:1:2+. * * 1 = “1”22~1~2+1“1”2”1”2+’ ’ 

+ ”~2~~1~2+bl”~”1”2+’ * 

+ ... 
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But VW(R) is  a symmetric dyadic, and t h e  cross-dot product of U I and any 

symmetric dyadic is  equal to zero, 

Example: 

of t h e  spherical  coordinates R,X,B shown i n  Fig. 2.16.2, one can f ind M - as 

-_. - 
What remains is Eq, (I), 

* 
When V(R) - i s  avai lable  i n  the form of an e x p l i c i t  function V (R,X,B) 

N 

Dif fe ren t i a t e  Eq. (2,16.16) t o  ve r i fy  t h a t  

where Q,,, Q,,, and Q3, are given i n  Eqs. (2.16.10 - 2.16,12) and 

Next, l e t  

(j,k=1,2,3) 
A I = a  @ I  j k  -j - - " %  
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2-20 Gravitational potential energy 

In the context of Lagrangian or Hamiltonian mechanics, the phrase. 
* 

potential energy" refers to a function of the generalized coordinates qr 19 

(r=19**.,n) of a system S (in an inertial reference frame A) such that 

where Fr, the generalized force corresponding to q is defined in terms of r' 
Ei, the position vector of a typical particle Pi of S relative t o  a point f ixed 

in A, and Fi, the resultant of all contact and body forces acting on Pi, a8 

(r=l,. . . ,n) (2) a 
Ei i=1 'qr 

F r = C  - *  

Here N is the number of particles and the partial differentiations are performed 

in reference frame A. 

the force functions discussed in Secs. 2.10 - 2.19. For example, this is the 

case when S consists of a single particle P of mass m moving under the acti 

of the gravitational force exerted by a particle f! of mass 

then given by 

In some situations, CP is simply the negative of one 

P -  

fixed in A, . (9 is 

cf, = - (Gkp-' + C) . (3) 

where G, p, and C have precisely the same meaning as in Eq, (2.10.2). 

(3) also furnishes the potential energy when S consists of two particles BLQVI- 

Eq. 

ing under the action of their mutual gravitational attraction. 

situations, @ cannot be found so simply, but some of the force functions of 

In other 

Secs. 2.10-2.14 are, nevertheless, useful, for they provide contributions . 

to CP. 

P1 and P2, of masses m 

For example, if S consists of a rigid body B of mass m and two particles 

and m2, respectively, and if these three objects opove 1 

* 
The symbol cf, is used for potential energy rather than the more familiar V, 
to avoid confusion with the use of V for the force function in Secs. 2.16-2.19. 
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under the action of forces of mutual gravitatio~l attraction, then 4 can be 

pressed as 

with [see Eq, (2.10.2)] 

-1 Q = G m m p  + C o  
0 1 2 0  ( 5 )  

- .  and [see Eq. (2.11,5)] 

@i = Gmi/pil pd.r + Ci (i=1,2) (6) 

where po is the distance between P and P2, pi is the distance from Pi to 1 

a generic point P of B, p is the mass density of B at P, and Cos C1 and C2 are 

arbitrary constants. 

Force functions associated with approximations to gravitational forces 

and moments can at times be used in the formulation of a potential energy 4; 

but ,it can occur that apparently relevant force functions exist when 4 does 

not exist. 

the action of gravitational forces exerted by a particle P' of mass 

For example, let S consist of a rigid body B of mass m moving under 

fixed in 

A, and suppose that the resultant gravitational force F exerted on B by P is 

approximated with as defined in Eq. (2.3.6), while the moment about the 

- 
* 

mass center B 

defined in Eq. (2.6.3). 

of B of all forces exerted on B by P is approximated with as 

Then the potential energy 4 of S can be expressed a8 
N 

Q = -v (7) 
f i  

with 7 given by Eq. (2.12.13); but if F - is approximated with F - as defined in 
Eq. (2,3.5), while M is approximated with %, then (as shown for a specific 

case in the Example following) there exists no function Q that satisfies Eq. 
- - 

t 

A N 

(11, despite the fact that force functions for - F and M do exist in the sense 
A 

that F and can be expressed as - - 
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and 

* 
where ,R is the position vector of B relative to 5 while 

V1 = G k m l  

and 

with v(~) as given in Eq. (2.12.2). (The non-existence of a potential energy 

under these circumstances may be an inconvenience, but it does not render the 

approximations under consideration invalid. They are, in fact, particularly 

useful, and are, therefore, employed extensively, Zn the analysis of motions 

of space vehicles). 

Derivations: The resultant of all contact and body forces acting on a 

single particle P of mass m moving under the action of the gravitational force 

exerted by a particle P’ of mass is given by 

2 -312 F = ~ P ( P  - -  - 
(2.1.1) 

which shows that CP as.given in Eq. (3) is the potential energy of a system S 

consisting solely of P. Similarly, if S consists of both P and F, the 
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t a n t s  E and 9 of t he  forces  act ing on P and on f! are g 
-3/2 

F =  - 
(2.L 1 )  

and by 

-F - s =  - 
(2.1.2) 

where p1 and p2 are respect ively the  posi t ion vectors  of P and 

to  a point f ixed i n  A; and 

r e l a t i v e  

= - e F + - e ?  ap2 
E - _ -  i::) e F .m 

Fr(2) aqr - aqr - (14) aqr 

or,  since p -p = p, -1 -2 - 

so t h a t  @ as given i n  Eq. (3) is once again the poten t ia l  energy of S, 

When S cons i s t s  of a r i g i d  body B of m a s s  m and two p a r t i c l e s ,  P1 and 

P2, of masses m 

a c t i n g  on P1 and P2 are respect ively [see Eqs. (2.1.1), (2.1.2),(2,2.2)] 

and m2, the r e s u l t a n t s  El and g2 of a l l  contact and body forces  1 

+ G m l I p  (p') -3/ 2 pd.r 
-1 -1 

and 

where po -3 t he  pos i t ion  vector of ml r e l a t i v e  t o  m2, and p1 and p2 are t..e 

pos i t i on  vectors  of a generic po in t  P of B r e l a t i v e  t o  P1 and P2 a s  shown i n  

Fig. 2.20.1. 

by [see Fig. 2.20.1 f o r  El and E 2 ,  and use Eq. (2)l. 

- - - 

The contribution t o  F of forces  acting on P1 and P2 is given r 
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0 -  

Figure 2.20.1 
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kL for fbrces  ac t ing  on the p a r t i c l e s  of B, these  e i the r  are forces exerted 

by P1 and P2, o r  they are forces  exerted by pa r t i c l e s  of E on each other. 

Since B is a r i g i d  body, the  latter forces make no contr ibut ion t o  Fr (see Kane, 

, Holt, Rinehart and Winston, p. 81), and a t yp ica l  force of t he  former 

kgud can be expressed as 

-3/2 -3/2 
E dE 

(201.11 

The contribution of t h i s  force  t o  Fr is thus given by [see Fig. 2.20.1 f o r  2, 

aad we Eq, (2)] 

and Pr can now be formulated as 
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or, with 

as 

-3/2 
pd.r - Gm2 1 2 -2 p (p' -2 y'2 pd.t 

-11 2 -11 2 
= .aqr "[Gm 1 m 2 (p2)-l'2 -0 + GmlJ(p:) 

a(s 
-I 

a 
(5:.)) aglc ( @ o  + + @2) <t> aClr 

Hence, @ as given by Eq. (4) is the potential energy of S. 

To form the generalized force associated with the force system presumed 

t o  be acting on a rigid body B in connection with Eq. (17), one can begin by 

expressing Fr as (see Kane,.Dynamics, Holt, Rinehart and Winston, p. 81) 

where R and s1 are defined as in Sec. 2.13, while w, the angular velocity of 

B in reference frame A, is regarded as a function of q and (r=l,...,n).. 

Using Eqs. (2.3.6) and (2.6.3), one thus obtains 

- 
r r 

or, equivalently, 
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Now, 
331 

a l + R -  
aqr 

a 

and, using a superscript B to denote differentiation in B, one can write 

so that 

or, since - I is independent of qr (r=l ,..., n) in B, 

* 
where Ill is the moment of inertia of B about the line passing through B 

and parallel to ala 

thus arrives at 

Substituting from Eqs. ( 2 4 )  and (271 into Eq. (231, one - 

The vector aa /aq 

dot-product of this vector with -al vanishes. Expressing f ( 2 )  as in Eq. (2 .3.31,  

is necessarily perpendicular to al. Consequently the -1 r 

- 
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one can thus r r i te Eq. (28) as 

a? m - 
aqr (2 e 12.2) 

which shows t h a t  9 as given i n  Eq. (7) is t h e  potent ia l  energy i n  question. 

Example: Fig. 2.20.2 shows a th in  rod B of mass m and a particle of 
- 

mass m, the same system previously cbnsidered i n  the Examples i n  Sec. 2.3 and 

2.11. 

ence frame A, and i f  P’ is fixed i n  t h i s  plane, then the pos i t ion  and or ien ta t ion  

of B i n  A can be described i n  terms of the  generalized coordinates q1 = 6, 

q2 = R, and q 

is approximated as 

I f  B is  constrained t o  remain i n  a plane fixed i n  an  i n e r t i a l  refer-  

= $. Suppose now tha t  E ,  t h e  resul tant  fo rce  exerted by on B, 3 

F e F  N = - 5 [ z l  + % (2-3 sin2$) al - - L2 - -  
8R 8R (2.3.6) 

* 
while E,  the  moment about B 

with 

of t h e  forces exerted on B by F, is approximated 

M =  N M = - T ( s i n 2 9  &L2 a3) - -  
(2.6.3) 

Then t h e  generalized forces corresponding t o  8 ,R,$ are 

F, = 0 
” 

- - [1 + L (2-3 sin2$) 1 - 
FR R2 8R2 
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Figure 2.20.2 
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lu 

and, if CP is taken to be the negative of the function V found in the Example 

in Sec, 2.11, that is, 
L2 1 -t- - (2-3 sin2$) 
24R2 

Then, as may be verified by carrying out the indicated differentiations, 

But, if instead of approximating as in Eq. (29) one uses 

while continuing to approximate 2 as in Eq. (30), then the generalized 

forces become 

G i b  sin2$, FR = - - G k 2  

R2 Fe Fir, = -- 8R3 
1 and there exists no function @ of 8, R and JI such that Eqs. (34) are satisfied 

simultaneously. Finally, if additional constraints are introduced so as to 

force B 

applying suitable contact forces at B , then 0 and R cease to be generalized 

coordinates; F 

system, is given by Eq. (33), both when F - is approximated as in Eq. (29) and 

when Eq. (35) is used; and a potential energy 4J thus exists in both cases 

because F 

\ 
* 
to move with a prescribed velocity, which can be accomplished by 

* 

the generalized force for what is now a one-degree-of-freedom 
. $’ 

can be expressed as F = - a@/aJI if one lets 
J, J, 

2 

16R2 
@ = - -  G i l &  COS2J, + c 
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